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ABSTRACT

Without the protection of atmosphere, space systems have to mitigate radiation ef-
fects. Several different technologies are used to deal with different radiation effects in
order to keep the space device work properly. One of the radiation effects called Single
Event Upset (SEU) can change the state of a component or data on the bus. A single er-

ror is possible to cause a system failure if it is not corrected.

Besides error correction, a space system also needs the flexibility to be modified
or upgraded easily. Consequently, the idea of having a TMR design instantiated in an
FPGA to construct a Configurable Fault-Tolerant Processor (CFTP) developed. The
TMR, which runs one program in three identical soft-core processors with voters, is a
scheme used to mitigate an SEU. The full design of TMR running in an FPGA functions
as a System-On-a-Chip (SOC). Both soft-core processor and FPGA offer the CFTP a

great flexibility to be reconfigured.

A complete TMR design includes some fundamental components besides proces-
sors and voters such as the Reconiler, Interrupt, and Error Syndrome Storage Device
(ESSD). These components have their unique function in the TMR design. They are cre-
ated and simulated. Factors that affect test bench-settings like processor pipelining are
important to always keep in mind. A component is designed to implement proper func-
tions first. Then it is revised to work with the processor and memory. The full design for
the TMR in this thesis proves its ability to detect and correct an SEU. The follow-on re-

search suggested is to improve the efficiency and performance of this design.
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EXECUTIVE SUMMARY

Space systems suffer radiation effects in space. These radiation effects occur ran-
domly and are hard to predict. The combination of effects can destroy a system or make
it functionless. Therefore, different methods are presented to protect space devices such
as radiation hardened or fault tolerant systems. Space systems are usually tested and
simulated several times before launching in order to minimize the probability of losing

control of it after launch.

The Single Event Upset (SEU) is a radiation effect which causes a bit flipping in a
device. This effect is not strong enough to destory a system but may cause a series of er-
rors that finally make the system unusable. This error should be corrected in time and

Triple Modular Redundancy (TMR) is one of the schemes to mitigate this problem.

The TMR design selected for the CFTP is to instantiate three soft-core processors
with some other components into a fault tolerant Field Programmable Gate Array
(FPGA). The FPGA is easily reconfigured and the soft-core processor has great flexibil-
ity to be programmed or modified. Those features give a TMR design the ability to be
maintained and upgraded. The processor chosen for TMR design is a 16-bit Reduced In-
struction Set Computer (RISC) processor named KDLX. It is a 5-stage pipelined proces-
sor with Harvard architecture. The pipeline affects the settings of a test bench and the in-
fluence is discussed in this thesis. A full simulation for all instructions is introduced to

help understand functions of different operation codes.

To stop an error being propagated, the TMR has to correct the error once it is de-
tected. Three processors in TMR should always execute the same instruction and all ac-
tions should be identical. Any inconsistency found among these three processors will be
considered as an error. Then the TMR needs to have a function to stall the current opera-
tion and correct errors in processors. For error detection and correction, the following
four major components are designed: majority bit voter, Reconciler, Interrupt, and Error

Syndrome Storage Device (ESSD).

X1X



Voters are connected at output pins or buses of processors. Therefore all output
signals are voted. The majority bit voter takes two out of three identical signals as the
output signal and reports the occurrence of an error if one of the three is different. The
voter is able to correct an error immediately and indicate where the error is. Construction

of three processors with voters called the TMR Assembly.

Due to different architectures between the processor and memory, a Reconciler is
responsible for coordinating the difference between these two architectures. The solution
is to run memory twice as fast as the processor and let the Reconciler route data of mem-
ory. The memory acts as an instruction memory at the first half of processor clock cycle
and acts as a data memory at the other half cycle. Thus, the processor thinks it is con-
nected with two different memories. The Reconciler in TMR for this thesis is purely a
reconciler and does nothing directly related with error detection or correction. This pu-

rity makes it independent of other components.

When an error is detected by voters, the Interrupt starts the Interrupt Service Rou-
tine (ISR). In order to store and read properly, this component has to run as fast as the
Reconciler. The Interrupt replaces the current instruction on the bus with a TRAP in-
struction when an error occurs. This TRAP instruction will be fetched by all processors
and executed. The ISR is a special program designed to correct inconsistency of contents
in registers between three processors. At the end of ISR, the Interrupt injects a Jump in-

struction into instruction bus and leads processors back to the normal operation.

The ESSD latches some specific data from the buses when an error occurs. These
specific data are called the error syndrome, which is unique for one specific error. Error
syndromes are very useful for health checking or error debugging to a system. In order to
latch data at the correct timing, the £SSD has to run as fast as the Reconciler (or Inter-
rupt). The ESSD does not pass its data to the Reconciler when storing. Instead, it takes
over the whole memory and saves error syndromes while the processors are deliberately

stalled.

The full design consolidates all components to construct a complete TMR design.

The design was simulated and its function was proved in this thesis. This premiere de-

XX



sign gives a big picture of how errors are detected and corrected. Furthermore, interac-
tion between different components is one of the important concepts to learn. The full de-
sign has four different clocks. The Reconciler, Interrupt and ESSD are using the same
clock speed since none of them needs the signal from another. The other three clocks are

KDLX clock, memory clock and one special clock for the latch.

For further research, extra circuits or components are needed to improve the abil-
ity of error correction on different components. Considering an error generated in the
Reconciler, the error may never be found and data stored to memory is always wrong.
Reinforcing reliability of some components is something that needs to be considered.
The current design may be modified to meet the requirements of advanced functions. Fi-
nally, searching for a better processor to enhance the performance is required as well.
Commercial processors usually come with a software package and have better customer
support. OpenCores that people share to the public are free but a user needs to have

backgrounds of coding in order to realize the core.
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I. INTRODUCTION

An electronic device in space environment suffers an extreme challenge to its re-
liability due to the lack of atmosphere and huge temperature variation. Without protec-
tion of atmosphere, a space system is exposed in a very unique circumstance which con-
tains cosmic rays (85% protons, 14% alpha particles and 1% heavy Nuclie), solar events
(X-rays, heavy ions and protons) and trapped radiation (electrons and protons trapped in
magnetic field of earth, called Van Allen Belt). Thus, radiation effects on a space elec-
tronic system become one of the most important issues that need to be solved. Those ef-

fects include Total Dose Effects and Single Event Effects.

A number of methods have been presented to mitigate radiation effects. Using
soft-core Triple Modular Redundancy (TMR) on a Field Programmable Gate Array
(FPGA) provides a practical solution to Single Event Effects which is low cost and offers
flexibility to be reconfigured and easily developed. The Configurable Fault-Tolerant
Processor (CFTP) is a system based on this concept utilizing Commercial-Off-the-Shelf
(COTS) technology and features of TMR soft-core microprocessors on FPGAs as a Sys-
tem-On-a-Chip (SOC).

A. RADIATION EFFECTS

Radiation effects on a space system vary depending on different altitude, location
and solar events. For example, the inner Van Allen Belt, from 650 km to 6300 km above
Earth’s surface, is composed mostly of protons about 10 to 15 MeV (1 MeV = 10°eV,

1 electronvolt = 1.6x10™"° J). As a satellite travels in Low-Earth Orbit (LEO), from 160 to
6000 km, it will have many chances to be affected by protons. The scheme used to solve
radiation problems on this satellite must be different from the one that travels in geosta-
tionary orbit, whose altitude is 35,780 km. Since a satellite in geostationary orbit has al-
most no protection by Earth, it needs to be more radiation-hardened (RADHARD) or ra-
diation-tolerant. Major effects caused by radiation are Total Dose Effects and Single
Event Effects (SEE) including Single Event Phenomenon (SEP), Single Event Upset
(SEU), Single Event Latchup (SEL) and Single Event Burnout (SEB) [1].



1. Total Dose Effects

Total Dose Effects refer to total radioactive particles that a device accumulates
over its lifetime. This accumulation degrades the performance until the device becomes
totally useless. The general solution to mitigate these effects so far is using radiation-
hardening or shielding techniques, but such methods can only extend the end of life of the
chip, not totally eliminate this problem.

2. Single Event Phenomenon (SEP)

Single Event Phenomenon is the situation where a transistor resets to its original
state due to the particle passing through. This causes unpredictable results and may or
may not affect operation of a system.

3. Single Event Upset (SEU)

Single Event Upset is a logical bit changing because of the radiation. A bit flip-
ping may cause a chain reaction and consequently result in an unrecoverable error of a
system. TMR is a mitigation scheme using three identical processors to run a same in-
struction set and voting all results to detect and correct such an error.

4. Single Event Latchup (SEL) and Single Event Burnout (SEB)

Single Event Latchup occurs when a parasitic transistor is formed by a spurious
current spike like heavy cosmic ray [2]. This puts a circuit into a high-operating-current
mode that has to be cleared by power off-on reset. Hard errors can drag the bus voltage

down or even burn out the circuit. This is called Single Event Burnout.

Some techniques used to mitigate radiation effects are shown in Table 1.

Radiation Effects Mitigation Techniques

Radiation-Hardening
Silicon-On-Sapphire
Total Dose Silicon-On-Insulator
Thin-Gate-Oxide
Shielding

Radiation Hardening

Single Event Latchup (SEL) Guard Rings

Quadded Logic
Single Event Upset (SEU) Software Fault Tolerance
Tripple Modular Redundancy

Table 1.  Radiation Effects and Mitigation (From Ref. [1].)




B. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

Sequential programmable devices are composed of gates and flip-flops and are
able to perform a variety of functions. Three major types of sequential programmable
devices are the Sequential (or simple) Programmable Logic Device (SPLD), the Complex
Programmable Logic Device (CPLD) and the Field Programmable Gate Array (FPGA).
A SPLD which integrates the AND-OR array and flip-flops is the smallest and the cheap-
est form of programmable logic. A CPLD is similar to a SPLD except that it is a collec-
tion of individual PLDs. Interconnections between PLDs are programmable as well. A
typical CPLD is equal to 2 to 64 SPLDs. An FPGA consists of logic cells surrounded by
a ring of programmable I/O blocks. Each cell is able to implement a logic function which

is done by programming and all interconnections between cells are also programmable.
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Figure I.  Composition of FPGA (From Ref. [3].)

Unlike the FPGA, PLDs need to be physically removed from a system and repro-
grammed by specific methods. This disadvantage makes a space system made of these
devices almost impossible to be modified or upgraded. Programmed circuits can be eas-
ily instantiated on a FPGA without any specific requirements. This feature reduces time-
to-market of a product as well. Comparing with other device, FPGAs are less power con-
suming, less expensive, have large-scale advantages of programmable logic and high

flexibility [4].

The FPGA selected for CFTP is the Virtex XCV800, a member in Virtex FPGA

family of Xilinx!. Table 2 shows the specification of some Virtex family members. A

1 Xilinx is a registered trademark of Xilinx Corporation.
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CLB is a Configuration Logic Block which can be configured to represent any 4-input
switching function to define a design. CLBs are also connected to each other by pro-
gramming as part of the design process. A design can be parsed to multiple CLBs for full

implementation if it is too large to fit into a single CLB [5].

Maximum Block RAM Maximum

Device System Gates CLB Array Logic Cells | Available I/O Bits SelectRAM+™ Bits

XCV50 57,906 16%24 1,728 180 32,768 24,576
XCV100 108,904 20x30 2,700 180 40,960 38,400
XCV150 164,674 24x36 3,888 260 49,152 55,296
XCV200 236,666 28x42 5,292 284 57,344 75,264
XCV300 322,970 32x48 6,912 316 65,536 98,304
XCV400 468,252 40x%60 10,800 404 81,920 153,600
XCV600 661,111 48x72 15,552 512 98,304 221,184
XCV800 888,439 56x84 21,168 512 114,688 301,056
XCV1000 1,124,022 64x96 27,648 512 131,072 393,216

Table 2.  Virtex FPGA family members (From Ref. [6].)

One of the reasons for choosing this FPGA was because its pin configuration is a
flat-pack. This type of interface is spaceflight certified and has been used in space for
years. Some of the newest and largest FPGAs nowadays are using ball grid array (BGA)
connections which are not only difficult to be attached to a printed circuit board, but also
not qualified for space applications [5].

C. SOFT-CORE PROCESSORS

A soft-core processor is a set of source codes expressed in hardware description
language (HDL) which express the behavior of a real processor. It is a synthesizable
HDL design and has no explicit hardware realization. This type provides great flexibility
but has limitation of performance and predictability. A hard-core processor, on the other

hand, provides high performance but is not flexible.

Since a soft-core processor can be easily instantiated on a FPGA, a designer has a
wide range of selections and combinations. A soft core can be optimized for different
FPGA sizes and characteristics to improve performance, giving the most cost-efficient
solution for target applications. A hard core which has specific function blocks needs to

work with special FPGA device. The need for these specific FPGAs is limited; therefore



they do not have the large-scale manufacturing benefits which forces vendors to support
few FPGA packages. Another disadvantage of using a hard core is if a problem is found
in one version, all specific FPGAs supporting that version have to be revised. Hard cores

are good for big and commonly used functions like a RAM [4].

The soft-core processor chosen for this iteration of the CFTP is a 16-bit Reduced
Instruction Set (RISC) KDLX processor. The DLX processor is coded in HDL and de-
scribed in Hennessy and Patterson’s Computer Architecture: A Quantitative Approach
[7]. The KDLX processor is a revision of DLX processor by Dr. Kenneth Clark that was
used on complex digital systems to predict SEU tolerance as described in his dissertation
[8]. Therefore, one of the reasons to use this processor is that it had been designed and
tested.

D. TRIPLE MODULAR REDUNDANCY (TMR)

Once a system is launched to space, it is hard and expensive to maintain it. In or-
der to correct errors caused by radiation, different ways have been presented and actually
used in space. Using RADHARD devices or fault-tolerant designs are the most common
ways. TMR is one of the solutions to make a circuit be able to tolerate occurrence of an
error and correct it. This is done by software so it is simple and low-cost. Taking advan-
tage of the FPGA, the TMR instantiated inside becomes easily modified and upgraded in
the future.

Basically, a TMR system is composed of three identical devices and voting logic
as shown in Figure 2. The voting logic is a majority voter which takes the majority of the
inputs to be the output value. Since Devices B and C are replication of Device A and they
all accept the same input value, the outputs of A, B and C should be consistent in theory.
Due to radiation effects in space, one of these three devices may have an error inside and
generate a different output. This inconsistency will be caught and corrected by voting
logic. Thus, the voted output is always a correct value under the assumption of a single

C1Tor.
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Figure 2.  Basic TMR Concept (After Ref. [1].)

When the TMR concept is applied to a microprocessor, it is illustrated in Figure 3.
All output signals of the CPU are voted; therefore no error should exist at outputs of vot-
ers. Any error that occurs represents that one of the CPUs has an error inside. If that er-
ror is not corrected by some way, it may result in more errors and finally become unre-
coverable. Thus, the Error Encoder in Figure 3 is a device that will analyze error signals
offered by voters and find out which CPU generates the error. Once the faulty CPU is
identified, some extra circuits will interrupt all three processors and correct that error.
When a simple circuit acting as a system is instantiated on a chip (e.g., FPGA), it is
called a system on a chip (SOC). Recall that a soft core is not efficient for complex func-

tions; therefore the memory block in Figure 3 is an external chip.

Address
Voter

'

Common

| i, A Data
Inputs

Voter Data To output
/0 Interface

Control
Voter

Figure 3.  Microprocessor TMR Concept

The CFTP implements these basic ideas. The circuits to do interruption and cor-
rect an error are quite complicated. All concepts for constructing a complete TMR de-

sign will be explained in the rest of chapters.



E. ORGANIZATION

Chapter II reviews previous theses and gives other information related to the
CFTP. Chapter III describes the testing environment and introduces the software used in
the thesis. Chapter IV discusses the function and features of the KDLX. Simulations of
all instructions for the KDLX are shown in this chapter. Chapter V goes over the design
of voter logic in previos theses then constructs the TMR Assembly and simulates it.
Chapter VI describes the Reconciler used to coordinate different architectures in this de-
sign. Chapter VII is a description of the Interrupt module designed for correcting errors
in the registers. Chapter VIII shows the simulation of the full design without any cir-
cuitry to handle the reporting of errors. This chapter explains the function of the ISR and
how different components work together. Chapter IX introduces the component used to
store necessary data for future analysis when an error occurs. This component is Error
Syndrome Storage Device and its function of the full design is verified in this chapter.
Chapter X contains conclusions and topics for follow-on research.

F. ADDITIONAL DOCUMENTATION

Appendix A contaions all schematics, test benches, and simulation results dis-
cussed in this thesis. Some the the figures are zoomed in to provide better views of the
small numbers on the buses. Appendix B is the description of the whole instruction set
for the KDLX. Appendix C contains VHDL codes for all components designed in this
thesis. The VHDL files for the KDLX processor are also included.

G. CHAPTER SUMMARY

This chapter has given fundamental understanding of radiation effects, FPGA and
soft-core processors. The general concept of a TMR design has been introduced as well.
Previous thesis work of CFTP will be reviewed in next chapter and the TMR technique
for correcting an error will also be described. Reading old thesis work is always a good
starting point of learning. Experience will be shared and direction for following research

will be pointed out.
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II. TMR REVIEW IN PREVIOUS WORK

To construct a CFTP design is a really complex work and needs a significant
amount of time to finish. In order to have a flawless design, lots of conditions need to be
considered and all problems should be solved in a reasonable way. Selecting components
may take few days or months depending on how much data or information is collected.
Decisions may still be changed at the last minute due to some unpredictable situations or
inevitable factors. Any change in the final design on a component sometimes will cause
a series of modifications to others. It is obvious that building a fully-functional CFTP
does take much effort and designers have to really understand how circuits relate each
other in order to revise or debug it. Unfortunately, graduate students at Naval Postgradu-
ate School only stay a short amount of time. A big design like CFTP is chopped into
several segments and assigned to different students. In this time constraints, students not
only need to realize what previous students have done but also take up a design in pro-
gress. Most of the time, students picking up the segments do not have a chance to learn
directly from students who have worked on this design before. Thus, the thesis becomes
an important interface of experience inheritance between generations of students.

A. LASHOMB’S DESIGN

Peter A. LaShomb [1] expressed many concepts in both TMR design and FPGA
selection. Traditional solutions for radiation effects were introduced including hardware
redundancy, like Quadded Logic, and software improvement for fault tolerance, like time
redundancy or software redundancy. In the TMR section, RADHARD and COTS were
compared in availability, performance and cost. Potential benefits of those two were
clearly described as well. The processor used in his TMR design was KCPSM, an 8-bit
microcontroller. It was free downloaded from Xilinx’s website and served as a readily
available test-case processor while waiting availability of other high performance proces-
sors. Constructing and testing of the TMR were done on Xilinx Foundation series soft-
ware which was available at Naval Postgraduate School (NPS). Voters and an error en-
coder were designed and explained in detail. Other issues including interrupt routine and

memory/error controller were left as follow-on research.



In the FPGA section, different FPGAs were compared in a number of aspects.
Five major parameters for choosing a good FPGA were gate count, availability of hard-
ware and software, packages (flat-pack vs. ball-grid-array), re-programmablility and ra-
diation tolerance. The Xilinx XCV800 was chosen as the candidate at that time for future
implementation.

B. EBERT’S RESEARCH

A complete CFTP conceptual design presented was in Dean A. Ebert’s thesis [9].
For hardware considerations, his thesis discussed why specific components were chosen
and how chips communicated in an integrated circuit. More detail and realistic concepts
about FPGA and CFTP configurations were described than before and chips were se-
lected based on a number of space-environment considerations. Discussion of system
memory was important and first described in this thesis. Memory configuration control-
ler, functional logic and glue logic were also new ideas never talked about in previous
work. The TMR circuitry was not one of the main topics in his research, but from his
work one can visualize the external connections of the FPGA and understand the role of

TMR in the CFTP process. Figure 4 illustrates the layout of the board he developed.

Emor Clock
Interrupt Control

7.3in

Status & .
o]

| Interface/switching logic

Figure 4. CFTP Conceptual Diagram (From Ref. [9].)
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The CFTP will be launched into LEO orbit on two satellites, NPSAT-1 and Mid-
STAR-1, in 2006. How the Department of Defense and Navy Space Experiment Review
Board (SERB) and the Space Test Program (STP) Office were involved with these two
satellites was described in his thesis. Other documents related to design descriptions and

requirements of the STP office were attached as appendixes as well.

C. JOHNSON’S IMPLEMENTATION

Steven A. Johnson [5] focused his work on TMR design. The essential compo-
nents to make a circuit be fault-tolerant were identified. Circuits designed in Lashomb’s
thesis could not be used due to different design architecture and the significant upgrade of
computer-aided-design software employed. Basic concepts for constructing a TMR cir-

cuit were still the same, but implemented in a different way.

KDLX, a 16-bit processor, better than 8-bit KCPSM processor, was the processor
used in Johnson’s research. His design consisted of tmra, Interrup, Error Syndrome Stor-
age Device (ESSD) and Reconciler. The block named tmra consists of three KDLX
processors and six voters. All processor output signals have to be voted. Interrup was
compiled in a state diagram and used to trigger the interrupt service routine to correct an
error inside the KDLX. ESSD was used to save the error syndrome in order to offer a log
file for analysis. The KDLX is a Harvard architecture device which has two address
buses and two data buses, a set of address and data bus for instruction memory and an-
other set for data memory. The off-chip memory for the CFTP is Von Neumann architec-
ture. The Von Neumann architecture has only one address bus and one data bus. Due to
this difference, a Reconciler was designed to coordinate different timing constraints in
order to make a proper read and write on memory. The difference between Harvard and
Von Neumann architecture will be explained again while introducing KDLX in Chapter

IV.

Johnson’s full design schematic is shown in Figure 5. The memory is external to
FPGA and it should be connected to Reconciler located at the top left corner. Normally,
tmra communicates with Reconciler in order to access memory. Meanwhile, the syn-
drome data is latched into ESSD regardless of an error occurring or not. When an error

occurs, a signal will be sent to Interrup and starts the Interrupt Service Routine (ISR). At
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this moment, KDLX is stalled and ESSD saves the error syndrome to memory through
Reconciler. Then Interrup generates a TRAP instruction to KDLX and leads the whole
circuit into an error correction condition. When KDLX sees the TRAP instruction, it
jumps to a specific memory location and the program counter value before the jump is
saved in an interrupt address register (IAR), a special register inside KDLX. In the error
correction condition, the contents of all registers inside KDLX are saved to memory
through voters. Then, each register is reloaded from memory. The purpose for doing this
step is to correct any inconsistencies of the registers in all three KDLX processors. Since
all contents have to pass voters while saving, any error inside any register will be cor-

rected.

The last instruction in ISR is Return From Exception (RFE). This instruction in-
dicates the end of ISR and the program counter saved in IAR will be loaded back to the
KDLX. The logic gate set at the bottom in Figure 5 is a simple encoder of the RFE in-
struction which tells Interrup to stop the ISR. Finally, the whole circuit goes back to its

normal operation.

This circuit primitively illustrated the complexity of the design and was built
based on theory. Simulations and timing problems were left as follow-on research. It
was proved on software that with such huge circuit built inside, the XCV800 FPGA still
had a plenty of space and I/O blocks available.

D. CHAPTER SUMMARY

This chapter introduces work done by previous graduate students to give a direc-
tion where other resources are. This thesis mainly focuses on the TMR design and fol-
lows concepts in Lashomb and Johnson’s research. The primitive design has been done
and general concepts have been given. The Interrup takes over the whole circuit when an
error occurs. Specific locations in memory are reserved for ISR and storing error syn-

dromes. No other instructions should be able to access these locations.

In the next chapter, the testing environment and ISE software are introduced. De-
veloping a consistent testing environment is important in order to have the right compari-
son. A description of software tools is also often useful information for a reader. This

helps people understand more about simulation.
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Full TMR Design Schematic (From Ref. [5].)
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III. TESTING ENVIRONMENT AND ISE SOFTWARE

It is hard to build a circuit without simulating it since that is the cheapest and fast-
est way to verify if a design works or not. The software used for simulation and the one
used for constructing circuits do not need to be made by the same company. Different
programs may use different ways to compile code or run simulations. A circuit built via
some specific functions offered in one program may not fit into other programs. There-
fore, a designer using programs made by different persons or companies sometimes face
the problem of incompatibility. This issue can be solved if a package of service is
bought. Generally speaking, products made by the same company are more compatible

with each other and it is easier for that company to provide complete customer services.

Simulation is a very important component of design. A good design without a
proper simulation may have degraded performance or efficiency. Sometimes inaccurate
simulation results can mislead a designer into modifying something which is not sup-
posed to be modified. A good simulation result could not only prove one’s design but
also help others understand the concept one embodies in a design. In terms of thesis re-
search, simulation helps the designer and others to verify the design without spending too

much time. Follow-on students can simply rerun the program and prove the consistency.

All settings of test benches for simulations will be offered in this thesis. This kind
of information is usually not available on a lot of testing or simulation. Providing the
simulation result without providing parameters means that others may not be able to un-
derstand the testing backgrounds and may prevent people from building an identical test
bench. This is not important for a reader on the web, but it is important for a graduate
student working on a thesis. First, a program sometimes crashes and files will be lost for
some reasons which means someone may never get the same simulation outputs. Second,
a modified circuit sometimes needs a new test bench for it. Without those parameters,
simulation will be done under different testing environments and performance improve-

ment may not be proved.
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A. COMPUTER SPECIFICATIONS

System performance is often an important factor for testing. Running a program
on a slow machine takes longer time than on a fast machine but the program result should
be the same. When considering timing issues, performance of a system can be an impor-
tant role. A slow computer basically cannot handle large amount of data and sometimes
forces a user to reboot. As the TMR design gets more complicated, simulation will take
longer for sure. The speed of how many data per second that a system can handle may
affect the accuracy of simulation. Specifications of testing environment are always stated
in a lot of computer magazines especially when testing a new hardware performance.

The TMR design so far is not so complicated that it needs a high performance computer
to simulate it. The information offered in Table 3 can be used as a reference in future

thesis work.

Model IBM ThinkPad A31 (2652Q5U)

Processor Pentium®2 4 2.0 GHz

Memory 1 GB PC2100 DDR SDRAM

Hard Drive 40 GB 4200 RPM

Operating System Windows 2000 Professional

OS version 5.0 Service Pack 3

Video Card Mobility Radeon 7500 AGP
Table 3. Computer Specifications for Simulation

B. XILINX ISE SOFTWARE

The software used for constructing TMR design is a package called ISE made by
Xilinx®3, one of the largest FPGA manufactures in the world. This software is available
at NPS and is used in labs for some courses. Students who want to do FPGA design
should have basic understanding of this program. In order to do this research, it was nec-
essary to learn about ISE and its associated simulator from the Xilinx website [10], an in-

depth tutorial [11] or personal experience.

2 Pentium is a registered trademark of Intel Corporation.

3 Xilinx is a registered trademark of Xilinx Corporation.
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ISE 5.2.031 was the version used for this thesis. Project Navigator was the overall
controller of the ISE design system. The other important program used in this thesis
called ModelSim®#4 is a powerful simulation tool. Its full version name is ModelSim XE

II 5.6e. Logos of Project Navigator and ModelSim are shown in Figures 6 and 7.

Project Navigator

Release Yersion: 5.2.03
Application Yersion: build+F-31+0
Reqistration IC: 135766720475 .
AN TP

Copiyright (21 1995-2002 ¥ilinz, Inc,

All vights rezerved.

Figure 6.  Xilinx ISE Project Navigator Logo

Model Technology

A MENTOR GHAFHICE COMPANY

Figure 7.  Xilinx ISE ModelSim Logo

The FPGA selected for CFTP was a Xilinx Virtex XCV800 hq 240 with speed
grade of —4. This is an FPGA with 800 gate equivalents, in a package with 240 pins.
Thus using ISE to develop and simulate the TMR design should be able to achieve the

best design and the most realistic simulation of any other programs.

While this research was being performed, Xilinx released a new version of ISE

6.11 to its customers. Xilinx has warned that loading a project made in an old version of

4 ModelSim is a registered trademark of Mentor Graphics Corporation.
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ISE into ISE 6.11 will make an unrecoverable change and the project can no longer be
read by older ISE software. Since a lot of simulations have been done at this moment and
in order to keep the consistency of all testing environment, simulation on the latest ver-
sion is left as a part of future work.

C. CHAPTER SUMMARY

This chapter summarized hardware and software information along with simula-
tion environment. Simulation may look different in different software versions and
sometimes new error will be generated. Undiscovered errors or potential defects of a de-
sign may be pointed out in the new version software. Sometimes the difference between
new and old program is described in the user guide or on company’s website. It is good
to know primary evolution on new software and expect changes on old design. Work be-

comes efficient if one can exploit a program’s features and functions.

Components in TMR design will be introduced in following chapters. Before
constructing a full design, each circuit is built and tested. Therefore, simulation results

will be used to explain how a circuit functions.
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IV. KDLX INTRODUCTION

The KDLX, a 16-bit processor, is the kernel of this TMR design. Each compo-
nent in the design is connected with a KDLX processor and tested as the final procedure.
The KDLX is the soft-core processor to be used for each of the three processors in the
design of the TMR system as shown in Figure 3. Due to the features of the KDLX pipe-
line and wiring delays, a circuit that works in a test bench by itself sometimes does not
work with a KDLX. Knowing KDLX helps a designer foresee problems when building a
circuit with it. Therefore, understanding KDLX is the first step for constructing a TMR
design.

A. INSIDE KDLX

The KDLX is coded in VHDL, VHSIC (Very High Speed Integrated Circuit)
Hardware Description Language. It is composed of two top-level blocks, core and
10 _Pads, as shown in Figure 8. The core and IO Pads are names of blocks; corel and
10 _Pads] are local block names representing core and IO _Pads, respectively, in the
VHDL file called “dlx.vhd”. The word KDLX at the top right corner is the name of the
outer block. Numbers next to input and output pins represent the width of the bus.
Words in bright green are local signals and none of the interconnections between these
local pins are accessible from the outside (e.g., the connection between /n_Data on
10 Padsl and Input data on corel). All pins on the left side are input signals and all
pins on the right side are output signals, except the Data bus. Controlled by /O Pads1,
the data bus on KDLX is bi-directional. It sends out data when writing to memory and
stays high impedance otherwise. High impedance allows other devices connected on the
data bus to drive the bus, but data will not be accepted by KDLX at this moment even if it
flows inbound. The dash line in sky blue inside /O _Pads] is an internal connection. This

internal connection functions only when input signal Out _En_n is low.

Notice that most input and output pins of KDLX are the same as corel. The func-
tion of /O Pads] is to interface the external bi-directional data bus to input data and out-

put data buses on corel. To understand KDLX better, the core needs to be explored.
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Figure 8.  Inside KDLX

Major functional blocks are all inside core and are shown in Figure 9. These

blocks are zero_test, pipeline, regfile, pc_control, rw_control, alu, word_reg single,

word_mux3 and word _mux4.
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The local block name used in the file “core.vhd” is boxed at the top of each func-
tion block. Words in bright green are still local signals and those in sky blue represent
global signals only within the core. They are considered global signals because most
blocks have these signals and they all receive the same value. For instance, all blocks re-
ceive zero when signal resetn is low. When the global signals Shifi En is low, local
block pipeline I may invert this signal to high internally and use it to trigger other func-
tions. Therefore, Shift En low in the core does not mean this signal is low inside pipe-

line_I. That is why global signals are used for the core only.

The detailed functioning of each block is described in KDLX’s VHDL code. Fig-
ures 8 and 9 are plotted directly from the original VHDL code to illustrate how these
components connect. Functions of important components like alu, regfile, pc _control,
rw_control and pipeline are briefed here. Simulation of KDLX later will verify these
functions.

1. Function of alu

This block is able to do addition, logic computation, and barrel shifting. Subtrac-
tion can be achieved by adding a positive number with a negative number. KDLX uses
2’s complement arithmetic to do calculation. A simple 8-bit 2’s complement number ta-

ble is shown in Table 4.

Binary number Equivalent Decimal number
11111111 127
0 000 0 O0T 1 3
0000 O0OT1O 2
0000 0 O0O0°1 1
0000 O0O0OTDPO 0
1 1111111 -1
1 1111110 -2
1 1111101 -3
I 1111011 -4
1 0000 000 -128

Table 4.  2’s Complement Numbers
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Logic computation includes logic AND, OR and XOR functions. KDLX allows a
user to do logic computation between contents of two registers or the contents of a regis-

ter and an immediate value.

A built-in barrel shifter gives KDLX the ability to do logic or arithmetic shifting.
2. Function of regfile

All 15 registers of KDLX are in this block. The inbound data bus is connected to
all registers and an enable bus is used to control which register is being written. Two big
muxes, MUXA and MUXB, route the output of a selected register to the outbound data
bus.

3. Function of pc_control

The program counter sends the address to the instruction memory in order to fetch
an instruction for next step. The pc_control assumes an important role while executing a
Branch, Jump or TRAP instruction. For some instructions like Jump and Link,
pc_control will save the return address of the instruction that comes after the next 2 in-
structions. This is because KDLX is pipelined, and, therefore, two instructions after the
Jump will be executed before the jump occurs. The return address is saved in register 15.
Since no instruction in KDLX is able to read the return address in register 15 directly,
another circuit needs to be constructed in order to jump back to where the Jump and Link

instruction left off.

Another important component in pc_control is the interrupt address register (IAR)
which has been mentioned in Johnson’s implementation. IAR is a register not accessible
for a user. This special register is merely used to save the return address of the TRAP in-
struction. When the TRAP instruction is executed, the return address (which is the ad-
dress right after the next 2 instructions) is saved into the IAR. After this, the program
counter jumps to another memory location and start reading another set of instructions.
Another instruction named Return From Exception (RFE) will be at the end of the in-
struction set. RFE will read the IAR and jump back to the memory location indicated.
The jump, branch and trap implementations will be discussed again while simulating

KDLX in this chapter.
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4. Function of rw_control

Obviously this is where KDLX controls read, write and program read signals for
the memory modules that are attached to it. An important point here is that the KDLX
read and write signals are active low. This means these two signals are activated at the
falling edge of clock.

5. Function of pipeline

Inheriting the nature of DLX, the KDLX is a five-stage pipelined processor, i.e.,
Fetch, Decode, Execute, Memory and Write Back. At the Decode stage, signals used to
select registers in regfile are assigned. At the Execute stage, eight instructions are spe-
cific monitored. These eight instructions are Jump, Jump and Link, Branch if Equal
Zero, Branch if Not Equal Zero, RFE, TRAP, Jump Register and Jump Register and
Link. At the Memory stage, the signals are generated to allow the KDLX to read from or
write to memory. The last stage, Write Back stage, allows most of the instructions to
write to registers except some specific ones.

6. KDLX Summary

Thankfully, the ISE software has the ability to transfer VHDL code to a schematic
so the user has an option to study a circuit without understanding VHDL code. The
Schematic is more graphical than code and allows people to physically see how circuit is

wired. The schematic symbol of KDLX is shown in Figure 10.

dlx

s— clock_in prog_rd —=

d———=

s— resetn
wr—=
=— stalln addr_int(15:0) ——
pe(15:0) ——4

data(15:0) ——%

t— instr(23:0)

Figure 10.  Schematic Symbol of KDLX
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a. Inputs and Outputs

As mentioned earlier, KDLX has four inputs, five outputs and one bi—
direction bus. Four inputs are three 1-bit pins, i.e., clock_in, resetn and stalln, and one
24-bit instruction bus. Five outputs are three 1-bit pins, i.e., prog rd, rd and wr, and two
16-bit buses, i.e., addr_int(15:0) and pc(15:0). The only bi-directional bus is a 16-bit

data bus. Functions of these pins are listed in Table 5.

Symbol Signal Name Function
clock in Clock input
Reset KDLX when low. All register contents are
resetn Reset

cleared.

Stall KDLX when low. Stall everything including

stalln Stall T
data in pipeline stage.
instr(23:0) Instruction Bus Receive instructions sent from instruction memory.
prog rd Program Read
rd Read Read data from data memory when low.
wr Write Write data to data memory when low.
addr int(15:0) | Data Address Send data address to data memory.
pc(15:0) Program Counter | Send instruction address to instruction memory.

data(15:0) Data Bus Receive data from data memory or send data out to
data memory.

Table 5. Function of Pins on KDLX

b. Harvard Architecture and Von Neumann Architecture

KDLX is a Harvard architecture device that has a pair of address and data
buses for instruction memory and another pair for data memory. Figure 11 illustrates the
concept of this architecture. The device at the center sends the address of instruction to
an instruction memory. Then the instruction memory on the left will send an instruction
back to the device. If the instruction received is to read or write data to data memory, the
device at the center will send a data address to the data memory at the right side to indi-
cated the memory location it wants to read or write. If the device wants to read, the data
bus will be driven by data memory and data is sent from data memory to the device. If
the device wants to write, the data bus will be driven by the device and data is sent from

the device to data memory.
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data address
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Data
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Figure 11. Harvard Architecture

By applying the same concept to KDLX, a picture like Figure 12 is under-

standable.
. pc(15:0) addr_int(15:0)
Instruction E— Data
Memory —_— - Memory
instr(23:0) data(15:0)

Figure 12.  KDLX Connections with Two Memories

The Von Neumann architecture, on the other hand, has only one address
bus and one data bus. A single memory is used in this architecture. A processor using
Von Neumann architecture has less timing issues that need to be solved with memory
since they are the same architecture. A Harvard-architecture processor, e.g., KDLX,
needs to deal with possible timing mismatches with memory if only one memory is avail-
able. In the CFTP design, only one memory is available for the TMR circuit thus it is an
instruction memory and a data memory as well. Recall that a component in Johnson’s
implementation (called Reconciler) is such a device used to integrate these two different

architectures.

In order to consolidate a four-bus processor with a two-bus memory, the
memory has to run in double speed to support two accesses per clock cycle. Figure 13

shows how KDLX communicates with only one memory.

pc(15:0)
addr_int(15:0) N
—> Instruction
&
Data
——— Memory
instr(23:0)
R —
data(15:0)

Figure 13. KDLX with One Memory
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Since KDLX is a pipelined processor, it needs to be able to read or write
data at the time it fetches an instruction. Both of these events can happen in one KDLX
clock cycle. If the memory is twice as fast as the KDLX, it is able to deal with instruc-
tion at the first memory clock cycle and deal with data at the second memory clock cycle.
In Figure 13, pc(15:0) and instr(23:0) are done in the first memory clock cycle;
addr_int(15:0) and data(15:0) are done in the second memory clock cycle. The memory
used here needs to be a 24-bit memory due to the width of instruction bus. Because the
KDLX data bus is only 16-bits wide, only the lower 16-bit data will be accepted and the
rest are buffered out.

B. PIPELINE CONCEPTS

The KDLX is a five-stage pipelined processor. These five stages are Fetch, De-
code, Execute, Memory (Mem) and Write Back (WB). When doing a write, data is writ-
ten to a register at the third clock cycle, i.e., the Execute stage. Therefore, a destination
register used in one instruction is not available until 2 clock cycles later. This concept
has significant impacts when creating a test bench. Figure 14 shows the pipeline execu-

tion of KDLX in normal operation.

Instruction Clock cycle
number 1 2 3 4 5 6 7 8 9
Instruction 1 Fetch Decode Execute Mem WB
Instruction 2 Fetch Decode Execute Mem WB
Instruction 3 Fetch  Decode Execute Mem WB
Instruction 4 Fetch Decode Execute  Mem WB
Instruction 5 Fetch Decode Execute Mem WB

Figure 14.  Pipeline Execution in KDLX

In Figure 14, if Instruction 1 is loading data from the memory to register 3 (for
example), the action to load register 3 starts at clock 3 and ends at clock 5 which means
register 3 should not be accessed as a source register in Instruction 2, 3 and 4. Failing to
do so, Instruction 2, 3 and 4 will either fetch a wrong value or unidentified data. Thus a
new value of register 3 is only available for an instruction equivalent to or later than In-

struction 5.
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C. MEMORY IN SIMULATION

All components generated for TMR design were simulated with KDLX and mem-
ory as the final step. The ISE software has several different kinds of RAM or ROM in
schematics for users to choose. A designer can also construct a memory via VHDL code.
Another function called the CORE generator (Coregen) is a graphical interactive design
tool in ISE software to help a user design a module. Due to its simplicity, memory used

in this thesis was generated from Coregen.

A 24-bit memory with its simulation result is shown in Appendix A, section A. In

order to explain, a copy of this simulation was made and labeled as Figure 15.

Jftestbenchydk

00 01 02 03 04 05 06 n7 08 : 0o 01 02 03 04 05 06 07 D8 09

[
|
ftesthench/addr |
ftestbench/data_in TDGDGEG 000047 J00004C 000051 1000056 [0000S8 1000060 |0000ES [000D6A GJODEF::;;j'l:‘,_-d
f 1
[testbench/enable_m l

Jtestbench/we

Jtestbench/data_out [ 000000 [000047|A00004C 4000051]{000056 |000058)i000060 ;000065|00006A |00006F 000074 [D00047|100004C ;0000513000056 |00003B|J000060 A000065)100006A 100006F (00007

T !

point | point 2

Figure 15.  24-bit Memory Simulation Result

Values on the address bus and input data bus are assigned in the test bench. In
this simulation, memory is being written at point 1. The first value (i.e., 000047 ¢) is
written into memory location 00,4 and the second value (i.e., 00004C;) is written into
memory location 01 and so on. At point 2, memory starts being read and all values are
output as originally initiated. One of the features of this memory is that data sent to
data_in bus for writing comes out at the data_out bus. A designer can monitor the data
written into memory from here. The write enable signal of this memory is active low;

therefore it reads when this signal is high.

Memory used in simulation can be a RAM or ROM. A ROM is used as an in-

struction memory which is not allowed to be written. A RAM can be initialized by writ-
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ing it before using it, but a ROM cannot since it does not have a write enable pin. Thus, a
ROM needs to be pre-configured. In the ISE software, a user needs to generate a coe file

and load it before a memory is generated in Coregen.

Memory offered in ISE software is not a real Von Neumann architecture since it
has separate buses for data input and output. For simplicity, the TMR design in this the-
sis uses this kind of memory. Further modification is needed when a real Von Neumann
architecture memory is available.

D. KDLX SIMULATION WITHOUT MEMORY

Operation codes (Opcodes) for the instruction set are described in Appendix B.
This appendix includes all instructions that can be implemented in KDLX. Simulation of
all instructions is one of the best ways to understand how KDLX functions. Before doing
that, a simple simulation on KDLX itself is shown in Appendix A, section B. Figure 16
is a copy of this simulation result for explanation. All registers in the KDLX are initial-

ized to the value 0000;¢ and register 0 is always zero.

flestbench/clk l ‘ | |
; : 1 ; i

T
000004 40305 440507 F00000C 450507 1450305 13408 1415601 1000000 45040A 145060 000000

& &

frestbenchying
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|

t

Jtesthenchiaddr |':\“’:' 0007 0000 0007 005 001C

ftestbench/stl_p

ftestbench/pe_p (0000 001 0002 0003 000 0005 poos 0007 0008 0009 000A 000B 000C 000D |j000E 000K 0010 0011
|

ftesthenchy pra_rd

Jtestbenchiwr p

[testbench/data_p

|
Jtestbenchird p 1

point 2

point 4 T

. . s
point 1 point 3 pomt 3

Figure 16. KDLX Simulation

In Figure 16, the first instruction at point 1 represents loading the value at mem-
ory location [(register 0)+05] into register 3. One can find a read signal becomes low at
point 2. Comparing the timing here with Figure 14, it is proved that the action on the reg-
ister occurs at Execute clock cycle. Since two values, 00146 and 00156, are already

available on the bus, KDLX loads these two data into register 3 and register 5, respec-
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tively. Recall that the pipeline features discussed in Figure 14, the new content of regis-
ter 5 is not available at any clock cycle before point 3. Using register 5 anywhere before
point 3 will use the old value in register 5 which is 0000;¢ in this case. In this simulation,

three NOP are inserted before using register 5.

At point 3, instruction 4505076 stands for storing the content of register 5 to the
memory location [(register 0)+07]. Again, the action starts at point 4 which is the Exe-
cute cycle for this instruction and the value loaded before shows up on the data bus.
Since the data bus is high impedance at this clock cycle, the KDLX is able to drive the
bus and output data. Without a high impedance, the KDLX is not able to use the bus be-
cause it assumes someone is using it. By checking the address bus of the KDL X simula-

tion, one can find how the instruction and address correspond with each other.

The two instructions following the store instructions are 413408, and 415601 ;6.
These add immediate values to register 3 and 5, respectively, thus the data inside register
3 and 5 changes. This can be seen at point 5 when these two register contents are stored

again.

For the rest of this thesis, we will use assembly language mnemonics to refer to
instructions. For example, a register is represented by R. Thus, RO stands for register 0
and R1 means register 1. Instead of a long explanation of each instruction, the operation
symbol will also be used in following contents. An instruction like 440305, will be rep-
resented as LW R3<-Mem(R0+05). The symbols and expressions are defined in Appen-
dix B.

E. KDLX SIMULATION WITH MEMORY

There are a total of 42 instructions for KDLX. Understanding these instructions is
necessary to generate a test bench for the TMR processor. Utilizing different combina-
tions of instructions can also help a designer use a short test bench to achieve the same
goal of simulation. Instead of loading a large number of instructions into instruction
memory before testing, pre-configured memory is used. Simply by selecting a different
memory file, the same test bench can be used to test different instruction set; otherwise,

several test benches are needed for different instruction set.
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Instead of testing all instructions in one huge test bench, the 42 instructions were
separated into four different instruction sets. Instruction set 1 and 2 test arithmetic and

logic functions. Instruction set 3 and 4 test Jump, Branch and TRAP functions.

The schematic designed for this testing is shown in Figure 17. Memory at left
side is a ROM used as instruction memory. The other one at right side is data memory
which is a RAM. The addr_box contains only buffers used to truncate the width of the
address bus since the memory address for this design is only 8-bits wide. Data memory
is pre-configured with 00034 since some numbers need to be loaded into registers at the

beginning of simulation.
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The write signal on KDLX is connected directly to data memory in order to be
able to write memory. Since KDLX uses a bi-directional data bus, buffers with enable
pin are needed to control the direction of data flow. Read and write signals are used to
enable or disable these buffers. Extra output buses are added for monitor purposes. All
test benches and simulation results are in Appendix A, section C.

1. Implementation Table of Instruction Set 1

An implementation table is generated as Table 6. Constructing such an instruc-
tion test bench can take a lot of time since instructions need to be rearranged and simula-
tion results need to be checked. Instructions tested in each set are not many, but a num-
ber of loading and storing instructions are needed to check the data. All numbers in Ta-

ble 6 are hexadecimal and RO is always zero.

Instruction (operation symbol) Opcode Value through Data Bus
LW R1<Mem(R0+03) 440103
SW R1—>Mem(R0+08) 450108 0003
LW R2<Mem(R0+04) 440204
SW R2—>Mem(R0+09) 450209 0003
ADD  RI+R2-R3 011320
SW R3—Mem(R0+0D) 45030D 0006
ADDI  Rl+ext(F9)—>R4 4114F9
SW R4—>Mem(RO+0E) 45040E FFFC
ADDUI RI1+(0A) —R5 21150A
SW R5—Mem(R0+0F) 45050F 000D
AND  RIeR3—R6 091630
SW R6—>Mem(R0+10) 450610 0002
ANDI  R4e(FD)—R7 2947FD
SW R7—Mem(R0+11) 450711 00FC
LHI R8<«FF||(0)* 0808FF
SW R8—>Mem(R0+12) 450812 FF00
OR R1+R3—R9 0A1930
SW R9—Mem(R0+13) 450913 0007
ORI RI1+(F0)—>R10 2A1AF0
SW R10—>Mem(R0+14) 450A14 00F3
SEQ R1=R2->R11=1 181B20
SW R11—>Mem(R0+15) 450B15 0001
SEQ R1#R3—R12=0 181C30
SW R12—>Mem(R0O+16) 450C16 0000
SEQI  RI=(0003)—R13=1 581D03
SW R13—>Mem(R0+17) 450D17 0001
SEQI  RI1#(0004)—>R14=0 581E04
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Instruction (operation symbol) Opcode Value through Data Bus

SW R14—>Mem(R0+18) 450E18 0000
SLL R4RITO)_5R15 114F20

SW R15—>Mem(R0+19) 450F19 FFEO
SLLI ~ R4<®%_,R3 514305

SW R3>Mem(RO+1A) 45031A FF80
SRA R47RITF0003)_,Rp5 134510

SW R5—>Mem(R0O+1B) 45051B FFFF
SRLI R4 _5Re 524603

SW R6—>Mem(R0+1C) 45061C 1FFF
SUBI  R8—ext(7B)—>R7 43877B

SW R7—>Mem(R0+1D) 45071D FES85
XOR  RY9®RI0—RI1 0B9BAO

SW R11—>Mem(RO+1E) 450B1E 00F4

Table 6. Instruction Set 1

There are four sections in this map. Instructions for loading or computing data
are implemented first in each section. Instructions for storing are used for checking data
and are implemented later. The third column lists all Opcodes for implementing and the
fourth column shows all data that should come out on the data bus.

2. Simulation Result of Instruction Set 1

To see the difference with the simulation of KDLX only, part of the simulation

results is shown in Figure 18.

Jtestbench/clk_p
Stestbench/clk_ram_rom
ftestbench/en_rom
Stestbench/en_ram
ftestbench/reset p
[testbenchy/stall_p
ftestbench/instr_pass | == |2847FD |0B0BFF ;0A1930 A2AIAFD (450711 (450812 |450913 [450A414 J181B20 [181C30 ;581003 §581E04 (45015 R450C16 (450017 [450E18 J114F20
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Figure 18.  Simulation of KDLX with Memory

34




In order to make sure that the memory is stable before KDLX is going to use it,
the memory clock cycle is doubled. The instruction memory will be ready before KDLX
reads the instruction. The data memory will write data in a very short time and always be

ready to be read by the KDLX.

Comparing timing before and after KDLX connects with the memory, a delay of
the read and write operation can be found. In Figure 18, the instruction at point 1 does
not start the write until point 2. Without the memory, this signal should be about one-half
clock cycle earlier than point 2. This difference is due to the timing delays from the
connecting memory. The fourth cycle of the KDLX clock is Mem which means that the

KDLX is accessing memory at this time.

Another delay shows on instruction fetching. (Recall the schematic in Figure 17.)
The program counter of KDLX sends out an instruction address to the instruction mem-
ory. Then the instruction memory reads the program counter and sends out an instruction
to KDLX. This delay makes each instruction in Figure 18 start at the falling edge of
clock. This is not like the instruction in Figure 16 which starts at the rising edge. The

same delay happens when KDLX reads from or writes to the data memory.

The pipeline feature can also be seen in Figure 18. While KDLX is still sending

out data, it is simultaneously fetching a new instruction.

An alternative way to check the simulation result is to construct tables for memo-
ries and registers as shown in Table 7. The instruction memory is pre-configured as the
first table at the left. The second table shows how the contents of registers change in the
simulation. The third table at the right expresses values in different locations after the

simulation is done. Blank areas in data memory will contain the default value 0003 .

In the instruction memory, a series of store instructions is used to check the con-
tents in registers. A series of load instructions is used to check the contents in the mem-
ory locations. The first six Opcodes implement the instructions in section 1 of Table 6.
Then the Opcodes from memory locations 08 to 10 execute the instructions in section 2
of Table 6. All instructions for loading and computation are executed before storing to
memory. The instruction sequence in Table 6 is used to track which part of the instruc-

tions are checked when storing.
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Instruction Mem Register Data Mem
00 2D | 45071D 00 00
01 440103 | 2E | 450B1E 01 0003 01
02 | 440204 | 2F | 000000 02 0003 02
03 000000 30 000000 03 0006 FF80 03
04 | 000000 | 31 000000 04 FFFC 04
05 | 450108 | 32 | 450101 05 000D FFFF 05
06 | 450209 | 33 | 450201 06 0002 1FFF 06
07 000000 34 450301 07 00FC FE85 07
08 011320 35 450401 08 FFOO 08 0003
09 | 4114F9 | 36 | 450501 09 0007 09 0003
0A | 21150A | 37 | 450601 10 00F3 0A
0B 000000 38 450701 11 0001 00F4 0B
oC 091630 39 450801 12 0000 0oC
0D | 45030D | 3A | 450901 13 0001 0D 0006
OE | 45040E | 3B | 450A01 14 0000 0E FFFC
OF | 45050F | 3C | 450B01 15 FFEO OF 000D
10 | 450610 | 3D | 450C01 10 0002
11 | 2947FD | 3E | 450D01 11 00FC
12 | 0808FF | 3F | 450E01 12 FF00
13 | O0A1930 | 40 | 450F01 13 0007
14 | 2A1AF0 | 41 000000 14 00F3
15 450711 42 000000 15 0001
16 450812 43 000000 16 0000
17 | 450913 | 44 | 44010D 17 0001
18 | 450A14 | 45 | 44020E 18 0000
19 | 181B20 | 46 | 44030F 19 FFEO
1A | 181C30 | 47 | 440410 1A FF80
1B | 581D03 | 48 | 440511 1B FFFF
1C | 581E04 | 49 | 440612 1C 1FFFF
1D | 450B15 | 4A | 440713 1D FES85
1E | 450C16 | 4B | 440814 1E 00F4
1F | 450D17 | 4C | 440915 1F
20 | 450E18 | 4D | 440A16 20
21 114F20 | 4E | 440B17 21
22 | 514305 | 4F | 440C18 22
23 134510 | 50 | 440D19 23
24 | 524603 | 51 | 440E1A 24
25 | 450F19 | 52 | 440F1B 25
26 | 45031A | 53 | 44011C 26
27 | 45051B | 54 | 44021D 27
28 45061C 55 44031E 28
29 | 43877B | 56 | 000000 29
2A | 0B9BAO | 57 | 000000 2A
2B | 000000 | 58 | 000000
2C 000000 59 000000

Table 7. Tables of Registers and Memories in Simulation 1
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The Opcode, 4114F9,¢, at memory location 09, implements ADDI
R1+ext(F9)—>R4. The original value of R1 is 00034 which equals to 3;9. Since KDLX
uses 2’s complement numbers, the sign extension value of F9;4 is FFF9,¢c which is (—7) in
decimal. The sum of 31y and (—7);¢ is (—4)19. Convert (—4);oto a binary number and do
2’s complement, the result in hexadecimal is FFFCj4. This agrees with the value in data
memory location OE .

3. Implementation Table of Instruction Set 2

The rest of the instructions (not including Jump and Branch) are listed in Table 8.
This table only shows the instructions that were tested in this thesis. The table does not
include the instructions for configuring memory contents. This will be explained further

in the simulation section of this chapter.

Instruction (operation symbol) Opcode Expected Value

SGE R1>R3—>R13=1 191D30

SW R13—>Mem(RO+1F) 450D1F 0001
SGE R15>R14—R9=0 19F9E0

SW R9—>Mem(R0+20) 450920 0000
SGEI R15>ext(E8)—>R10=0 S9FAES

SW R10—>Mem(R0O+21) 450A21 0000
SGEI R15>ext(E0) ->R11=1 59FBEO

SW R11>Mem(R0+22) 450B22 0001
SGT R4>R15—->R6=1 1A46F0

SW R6—>Mem(R0+23) 450623 0001
SGT R15>R4—R7=0 1AF740

SW R7—>Mem(R0+24) 450724 0000
SGTI R15>ext(FF)—>R8=0 SAF8FF

SW R8—>Mem(R0O+25) 450825 0000
SGTI R15>ext(87)—>R9=1 5AF987

SW R9—>Mem(R0+26) 450926 0001
SLE R1=R2—>R10=1 1B1A20

SW R10—>Mem(R0+27) 450A27 0001
SLE RI1<R13—>R11=0 1B1BD0

SW R11—>Mem(R0+28) 450B28 0000
SLEI R1<ext(03)—»>R12=1 5B1CO03

SW R12—>Mem(R0+29) 450C29 0001
SLEI R1<ext(02)—>R13=0 5B1D02

SW R13—>Mem(R0O+2A) 450D2A 0000
SLT R15<R1—->R6=1 1CF610

SW R6—->Mem(R0+01) 450601 0001
SLT R1<R15—>R7=0 1C16F0
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Instruction (operation symbol) Opcode Expected Value

SW R7—>Mem(R0+02) 450702 0000
SLTI  Rl<ext(0D)—>R8=1 5C180D

SW R8—Mem(R0+03) 450803 0001
SLTI  Rl<ext(01)->R9=0 5C1901

SW R9—>Mem(R0-+04) 450904 0000
SNE R1#R2—R10=0 1D1A20

SW R10—>Mem(R0+05) 450A05 0000
SNE RI#R15->R11=1 1D1BFO

SW R11—>Mem(R0+06) 450B06 0001
SNEI  Rlzext(03)—>R12=1 581C03

SW R12—>Mem(R0+07) 450C07 0001
SNEI  RI15#ext(E1)—>R13=0 58FDEI

SW R13—>Mem(R0+08) 450D08 0000
SRAI  R37™%_,Re 533606

SW R6—>Mem(R0+09) 450609 FFFE
SRL R37R2T0003)_yp7 123720

SW R7—Mem(R0O+0A) 45070A 1FFO0
XORI  R15@®(8A)—R8 2BF88A

SW R8—>Mem(R0O+0B) 45080B FF6A
SUBUI  R3—(80)—>R9 233980

SW R9—>Mem(R0O+0C) 45090C FF00
SUB RI1-R3—>R14 031E30

SW R14—>Mem(R0+0D) 450E0D 0083

Table 8. Instruction Set 2

4. Simulation Result of Instruction Set 2

The complete table set that shows all values inside memories and registers for this
simulation is shown in Table 9. In the instruction memory part of the table, the instruc-
tions shown in Table 8 actually start at memory location 2A 6. Instructions before this
point are used to generate the same register values used in instruction set 1. The first col-

umn of Table 9 shows values that are identical to the final results in Table 7.

The registers change many times during this simulation, but the table only shows
the initial and final values. The first column as described in the last paragraph is the

starting data for instruction set 2. The second column lists all final values in registers.

This simulation uses different data memory locations than instruction set 1. This

provides a boundary test for memory while testing KDLX.
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This instruction set demonstrates most of the possible comparisons between regis-
ters or of a register with an immediate value. Since the KDLX uses 2’s complement val-
ues, 00034 is obviously greater than FF80,6. Logical operations like ANDI, ORI, and

XORI do not use sign extension on an immediate value.
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Instruction Mem Register Data Mem

00 30 450A21 00 00

01 410103 31 450B22 01 0003 0003 01 0001
02 410203 32 1A46F0 02 0003 0003 02 0000
03 0803FF 33 1AF740 03 FF80 FF80 03 0001
04 0804FF 34 | B5AFS8FF 04 FFFC FFFC 04 0000
05 0805FF 35 5AF987 05 FFFF FFFF 05 0000
06 08061F 36 450623 06 1FFF FFFE 06 0001
07 410380 37 450724 07 FE85 1FFO 07 0001
08 4104FC 38 450825 08 FFOO FFB6A 08 0000
09 | 4105FF 39 450926 09 0007 FFOO 09 FFFE
0A 2166FF 3A 1B1A20 10 00F3 0000 0A 1FFO
0B | 0807FE | 3B | 1B1BDO 11 00F4 0001 0B FF6A
0C | 0808FF | 3C | 5B1C03 12 0000 0001 ocC FF00
oD 080FFF 3D 5B1D02 13 0001 0000 oD 0083
OE | 210AF3 | 3E | 450A27 14 0000 0083 0E

OF 217785 3F | 450B28 15 FFEO FFEO OF

10 210BF4 40 450C29 10

11 410907 41 450D2A 11

12 | 410D01 42 1CF610 12

13 | 410E00 | 43 1C17F0 13

14 | 410C00 | 44 | 5C180D 14

15 | 410FE0 | 45 | 5C1901 15

16 000000 46 450601 16

17 000000 47 450702 17

18 450100 48 450803 18

19 450200 49 450904 19

1A | 450300 | 4A | 1D1A20 1A

1B 450400 4B 1D1BFO 1B

1C 450500 4C 581C03 1C

1D | 450600 | 4D | 58FDE1 1D

1E 450700 4E 450A05 1E

1F 450800 4AF | 450B06 1F 0001
20 450900 50 450C07 20 0000
21 450A00 51 450D08 21 0000
22 | 450B00 52 533603 22 0001
23 450C00 53 123720 23 0001
24 | 450D00 | 54 | 2BF88A 24 0000
25 | 450E00 55 233980 25 0000
26 450F00 56 031E30 26 0001
27 000000 57 450609 27 0001
28 000000 58 | 45070A 28 0000
29 000000 59 45080B 29 0001
2A | 191D30 | 5A | 45090C 2A 0000
2B 19F9E0 | 5B | 450EOD

2C 59FAES8 5C 000000

2D 59FBEO 5D 000000

2E 450D1F 5E 000000

2F 450920 5F 000000

Table 9. Tables of Registers and Memories in Simulation 2
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5. Implementation Table of Instruction Set 3

This instruction set starts by testing the Jump and Branch instructions. The com-
plete implementation is listed in Table 10. There are no divisions in this table and the se-
quence of execution is from top to bottom. If an instruction jumps to the wrong memory

location, one or all contents of the target registers will not agree with the expected value

shown here.
Instruction (operation symbol) Opcode Expected Value
LW R1<-Mem(R0+03) 410103
LW R2Mem(R0+04) 410204
LW R3<Mem(R0+00) 410300
LW R4<Mem(R0+06) 410406

BNEZ  RI1#0—>Prog_Addr«—(05)+1+ext(04) C01004
Note: PC=05 and (05)+1+ext(04)=0A

BEQZ  R3=0—Prog Addr<«(0A)+1+ext(04)  C13004
Note: PC=0A and (0A)+1+ext(04)=0F

ADDI  RO+ext(25)—R5 410525
J (0020)—>Prog_Addr C80020
JAL (0014)—>Prog_Addr ; (23)—>R15 E80014
Note:(23) is return address
ADDI  RO+ext(8A)—R6 41068A
ADDI  RO+ext(40)—R7 410740
ADD R1+R2—R8 011820
ADD R1+R4—R9 011940
SW R15—>Mem(R0+01) 450F01 0023
JALR ~ R5—Prog_Addr; (ID)—>RI15 685000
Noter:(1D) is return address
J (0030)—>Prog_Addr C80030
SW R5—->Mem(R0+02) 450502 0025
SW R6—->Mem(R0+03) 450603 FF8A
SW R7—>Mem(R0+04) 450704 0040
SW R8—>Mem(R0+05) 450805 0007
SW R9—>Mem(R0+06) 450906 0009
SW R15—>Mem(R0+07) 450F07 001D
JR R7—Prog_Addr 487000
SW R2—>Mem(R0+08) 450208 0004

Table 10. Instruction Set 3
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6. Simulation Result of Instruction Set 3

For Jump and Branch instructions, the sequence of instructions in memory is not

the sequence of implementation. This can be easily understood by looking at Table 11.

The black arrows represent the normal sequence of operation. The blue dash lines
stand for Jump or Branch instructions without link, and the blue solid lines stand for

Jump and Link or Branch and Link.

The first branch occurs at memory location 05;6. Since the program counter at
that point is 05,6, it branches to memory location 0A ¢ with a given immediate value 04¢.
The action of branching occurs two clocks later due to pipelining, so the instructions at
memory location 06,6 and 07,¢ are fetched before the sequence branches to the new ad-

dress.

At memory location 0A ¢, another branch instruction is executed. It branches to
another memory location, OF ;5. Because the Opcode 410525,¢ is fetched before the
branch occurs, an immediate value is added into R5. This can be checked in the register

table or in data memory location 02, where Opcode 4505026 loads data to.

Opcode E80014¢ is a Jump and Link instruction. It jumps to address 14,6 and
save address 236 into R15. There is no doubt that address 23 ¢ is where the jump occurs,
not address 2056, 2116 or 221¢. In each case, the two instructions following Jump and Link

are fetched before the jump instruction is executed.

The instruction at memory location 1A 6 is Jump Register and Link. This allows
KDLX to read the address it wishes to jump to directly from its internal register. Sup-
pose one register is reserved for a special purpose and it contains a special memory loca-
tion. Then KDLX can always jump to that specific memory location by simply reading

the contents of that register without any extra instructions needing to be implemented.
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Instruction Mem
00
01 410103
L 02 410204
L 03 410300
L 04 410406
;---E 05 C01004
E % 06 000000
H 07 000000
: 08
é 09
:'-'-'-E 0A C13004
E N 0B 410525
: ocC 000000
: 0D
E 0OE
=P+ OF C80020
E E 10 000000
: 11 000000
: 12
: 13
: N 14 011820
: C 15 011940
: 16 450F01
: L7 000000
: T 000000
: L 19 000000
H L 1A 685000
: L8 000000
: T 000000
H 1D
: 1E
:
: 1F
4= 20 E80014
1o-srs| L 21 41068A
L. 22 410740
23
24
e-=2= 25 C80030
: E 26 000000
: 27 000000
: 28
i 29
: 2A
S-==p 30 450502
L, 31 450603
L, 32 450704
L. 33 450805
L. 34 450906
L, 35 450F07
.----% 36 487000
: N 37 000000
: 38 000000
§ 39 ‘
. N
-==» 40 450208
L. 41 000000
L, 42 000000
L. 43 000000
Table 11.

Register

Data Mem

00

00

01

0003

01

0023

02

0004

02

0025

03

0000

03

FF8A

04

0006

04

0040

05

0025

05

0007

06

FF8A

06

0009

07

0040

07

001D

08

0007

08

0004

09

0009

09

10

0A

11

0B

12

0cC

13

0D

14

0E

15

OF

3—>R15

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

20

21

22

23

24

25

26

27

28

29

2A

Tables of Registers and Memories in Simulation 3
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7. Implementation Table of Instruction Set 4

This instruction set contains one of the most complicated instructions in the TMR
design, which is the TRAP instruction. The TRAP instruction acts as Jump and Link or
Branch and Link. The difference is that it saves its return address into the IAR, not into
R15. The IAR is a specific register mentioned earlier when introducing the pc_control
inside KDLX. Storing the return address into the IAR not only saves a register but also

guarantees the integrity since it is only accessible for the TRAP instruction.

Another feature of the TRAP instruction is that it owns an instruction called Re-
turn from Exception (RFE). The RFE, Opcode F80000,¢, only reads the content of [AR
and jumps to that address. Since the IAR always contains the return address of the TRAP

instruction, the RFE instruction only works with the TRAP instruction.

Instruction set 4 for testing the TRAP instruction is shown in Table 12.

Instruction (operation symbol) Opcode Expected Value

ADDI  RO+ext(04)—>R1 410104
ADDI  RO+ext(07)—>R2 410207
TRAP  (0020)—>Prog_Addr ; (06)>IAR 280020

Note: (06) is return address
ADDI  RO+ext(09)—>R3 410309
ADDI  RO+ext(15)—>R4 410415
ADDI  RO+ext(0A)—R7 41070A
ADDI  RO+ext(11)—>RS8 410811
ADDI  RO+ext(C2)—>R10 410AC2
RFE (06)—>Prog_Addr F80000

Note: (06) is IAR
J (0011)—>Prog_Addr C80011
SW R1->Mem(R0+01) 450101 0004
SW R2—->Mem(R0+02) 450202 0007
SW R3—>Mem(R0+03) 450303 0009
SW R4—>Mem(R0+04) 450404 0015
SW R7—->Mem(R0+07) 450707 000A
SW R8—>Mem(R0+08) 450808 0011
SW R10—>Mem(R0O+0A) 450A0A FFC2

Table 12. Instruction Set 4
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8. Simulation Result of Instruction Set 4

The features of the TRAP instruction are shown in Table 13. When fetching the
TRAP instruction at memory location 036, KDLX stores the return address 06,4 to the
IAR. Two clock cycles later in the TRAP, the program counter changes to 20, and reads
the instruction at that address. After implementing a few instructions, the KDLX sees the
Opcode F80000,6 and retrieves address 06;¢ for the return. The content at location 06 is a

Jump instruction. Therefore, the KDLX jumps again to memory location 11 .

Some important features can be found in this implementation. First, the TRAP
occurs exactly after 2 clock cycles; otherwise the Opcode C80011,¢ will be fetched. Sec-
ond, the IAR is not directly addressable, so using Opcode F80000¢ is the only way to
verify the content of the IAR. Third, instruction set 4 can be an infinite loop if the test
bench never stops. After jumping to memory location 11,6, the program counter keeps
counting in order to read instructions. If no other signal stops the KDLX, it will read Op-
code F80000;4 again. This retrieves the IAR and jumps back to memory location 06,.
The Opcode C800116 will lead KDLX to jumping to address 11;¢ then to keep on read-
ing instructions until it hits F80000,¢ again. This loop can be observed in the full simula-

tion result for instruction set 4 in Appendix A, section C.
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€=

Instruction Mem

00
01 | 410104
R 02 | 410207
06—1AR 03 280020
04 | 410309
L 05 | 410415
<=1 06 | C80011
EE 07 | 000000
EE 08 | 000000

v 09

' 0A

E 0B

i | oc

' 0D

' OE

’ OF

v 10
-» 11 | 450101
L2 | 450202
L 13 450303
L4 450404
L5 as0707
L6 | 450808
L7 | 450A0A
L 18 000000
L 19 000000
LA 000000

1B

1C

1D

1E

1F
> 20 | 41070A
Lo | 410811
L 22 | 410AC2
L 23 000000
L 24 000000
L 25 000000
L 26 | F80000
L 27 000000
L 28 000000

29

2A

Register

Data Mem

00

00

01

0004

01 0004

02

0007

02 0007

03

0009

03 0009

04

0015

04 0015

05

05

06

06

07

000A

07 000A

08

0011

08 0011

09

09

10

FFC2

0A FFC2

11

0B

12

0C

13

0D

14

OE

15

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

20

21

22

23

24

25

26

27

28

29

2A

Table 13.  Tables of Registers and Memories in Simulation 4
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F. CHAPTER SUMMARY

This chapter introduced several important components inside KDLX and dis-
cussed pipeline concepts. Drawing a schematic from VHDL code is a good way to un-

derstand KDLX.

The simulation of KDLX with and without memory illustrated the concept of the
pipeline and developed ideas on how to organize a test bench. Most of the tables neces-
sary for simulation purposes were generated in this chapter. Having the tables generated
before constructing a test bench helps a designer to understand what the goal is and how
to achieve it. Tables created by the simulation gives a designer a big picture on how

things interact with each other. Sometimes things are hard to say but easy to see.

The TMR Assembly is designed in the next chapter. The function of the voter
and how it corrects an error will be explained. Then we will combine three KDLX proc-
essors with voters to form a TMR Assembly. Important simulation concepts will be re-

viewed as well.
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V. TMR ASSEMBLY

The TMR Assembly is composed of three KDLX processors with voters on all
outputs. All of the KDLX instructions have been tested in the simulation described in the
previous chapter and the fundamental concept of KDLX has been established. The next

step is to realize the function of a voter.

A voter is constructed by some simple logic gates and is able to find an error
when inputs are not consistent. Since the CFTP will be operating in a relatively benign
LEO orbit, the TMR design does not have to deal with too many errors per unit time.
The assumption of the TMR design is that we will not see identical errors on two proces-
sors at the same time. The voters pass the majority vote so, if the errors are identical,
they will not be detected (and will, in fact, be turned into truth.)

A. 1-BIT VOTER

The CFTP is designed to be fault tolerant by software. Its circuit needs to be able
to detect an error and correct the error by itself. In order to achieve that, the concept of a

voter is generated.

The function of a 1-bit voter has been introduced in Lashomb’s thesis [1]. This
section reviews the basic concepts and then starts constructing the TMR Assembly. Fig-
ure 19 shows what a 1-bit voter looks like. It is a simple circuit consisting of only AND

and OR gates.

AND2

S // g
AND2

AND2

Figure 19. 1-Bit Majority Voter (After Ref. [1].)
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The voter function is more obvious in the truth table shown in Table 14. This
voter always selects the majority of identical bits as its output bit. If two or more inputs
are incorrect, the voter output will also be incorrect. The ability to detect and correct two

or more errors in a voter is not vital for a system (e.g., the CFTP) in LEO orbit.

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 14.  Truth Table of A 1-Bit Voter (From Ref. [1].)

Assuming a single error, the output is always correct, but we cannot tell if there
has been an error just by looking at this output. Therefore, some extra gates are added to
report the occurrence of an error. Figure 20 shows a voter with error detection and Table

15 is its truth table.

/ 4//_/
AND2

AND2

o] [wl >

pd
o NOR2
N\

NOR3

Figure 20. Voter with Error Detection (After Ref. [1].)
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A B C Y ERR
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 1
1 0 0 0 1
1 0 1 | 1
1 1 0 1 1
1 | 1 | 0

Table 15.  Truth Table of Voter with Error Detection (From Ref. [1].)

The error detection, ERR, is 1 when one of the inputs is not identical with the rest.
When the CFTP is in space, it is possible to have an SEU on the voter itself. A bit flip
may cause the voter output to be incorrect. Say the second column of Table 15 has a bit
flipping on 4. This flipping makes 1 become the majority bit and output Y will give a 1
not a 0. Since a voter is used to catch and correct an error, it is not pleasant if it has an
error itself. Thus, some reliability is needed for the voter. A voter with added reliability

is shown in Figure 21.

N
Y
)
AND2
) ) D e [ v
Y
/ / ,// L INV L INV
AND2
OR3
AND2 N
> V_ERR>
[A 3 XOR2
(B>
AND2
R [ W
- AN ~
) >
/
[c /S
AND2 —
OR3
™
\
}
//
_

AND2

Figure 21. Voter with Added Reliability (After Ref. [1].)

This version is built by duplicating the original part of the voter and XORing the

two parts to generate a voter error detection, V' ERR. If the voter errors, the outputs of
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the two OR3 in Figure 21 will not agree with each other, and V' ERR becomes 1. Table
16 is the truth table of this circuit.

A B C Y V_ERR
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

Table 16.  Truth Table of Voter with Added reliability (From Ref. [1].)

The last step is to collect all of these pieces to construct a complete single-bit
voter. As introduced earlier, a voter with error detection is able to correct the error and
tell the user an error has occurred. For the TMR design, knowing the existence of an er-
ror is not good enough since the error also has to be corrected. In order to correct the er-
ror, the faulty input may needs to be identified. With all these considerations, a complete

circuit is generated as shown in Figure 22. The truth table for this circuit is Table 17.
E’mz ™y Ny [ [=0 ™
er J ara

o L
.

D—‘
. — — Y O
o o L/
5
o ) — [T
T30 O o
—l—m}
o
]
: :D—@

om3

Figure 22. Complete Majority Voter (After Ref. [1].)
52



A B C Y V ERR | D ERR | CID 1 CID 0
0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1
0 1 0 0 0 1 1 0
0 1 1 1 0 1 0 1
1 0 0 0 0 1 0 1
1 0 1 1 0 1 1 0
1 1 0 1 0 1 1 1
1 1 1 1 0 0 0 0

Table 17.  Truth Table of Complete Majority Voter (From Ref. [1].)

New signals CID 0 and CID 1 are used to identify the faulty input, with CID 0
representing the least significant bit. Using the third row of the table as an example, the
voter should be able to capture the error and identify the faulty input pin. The output sig-
nal Yis a0 and D_ERR, error detection, reports a 1. This indicates that one of input sig-
nals is not consistent and the correct input signal is 0. Furthermore, CID [ and CID 0
show 1 and 0, respectively, which means the second processor is faulty. Since Yis 0 and

the second input is faulty, it can be concluded that input B has an error and its value is 1.

The schematic of the complete majority voter built in ISE is shown in Figure 23.

All input and output pins are 1-bit wide.

A v
V_ERR|——

——B CID_0|——
CID_1}——

——C D ERR|——

Figure 23.  Schematic Symbol of 1-Bit Majority Voter

B. 16-BIT VOTER

Since KDLX has 16-bit output buses, 16-bit voters are needed in order to vote
every bit on these buses. A 16-bit voter is simply composed of sixteen 1-bit voters as
shown in Figure 24. All voters vote in parallel and produce five output buses for five dif-

ferent signals, ¥, V. ERR, CID 0, CID I,and D _ERR.
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Figure 25 is the schematic symbol used in ISE. The signal name D _ERR is
changed to ERR in order to simplify the notation.

Y(15:0) ——]

E—— A(15:0)
V_ERR(15:0) ——]
——B(15:0) CID_0(15:0) ——]
CID_1(15:0) ——]

——C(15:0)
ERR(15:0) ——]

Figure 25. Schematic Symbol of 16-Bit Voter

The voter performs an important role in TMR. It is the device to catch and report
errors. The CFTP in space can have an SEU occur anywhere in the FPGA. If the error is
caught by the voter, it will be corrected. If the voter votes incorrectly, it will be caught
by the voter error detection circuitry. The problem becomes more complicated if an error
occurs on the voter error detection. If the voter voted wrong but the error detection did
not catch it, the error may propagate through the system and corrupt the data. A new cir-
cuit can be added to detect error detection, but adding gates increases the probability of
an error and also increases the complexity. Making a voter that has acceptable reliability
without increasing the probability of an SEU too much is difficult.

C. TMR ASSEMBLY WITHOUT MEMORY

The concept of the TMR s to triplicate processors and vote all output signals to
get correct values. An even number of processors cannot use majority voters. Five or
more processors will increase the circuit size dramatically. As described earlier, this in-
creases the probability of having an error by SEU. The usual compromise is to use three
processors. The TMR does not increase circuitry too much and its efficiency has been

proved in some existing space systems.

In this section, several different architectures will be discussed, which is a good
chance to show how things change when different components are used. Important learn-

ing points will be provided at the end of this chapter.
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1. Schematic and Simulation 1

Figure 26 is the first design of the TMR Assembly for this thesis. Important sig-
nals are indicated with arrows. The three big blocks at the left side are KDLX proces-
sors. The sequence from top to bottom is processor A, B and C. The 24-bit instruction

input buses are instr_a(23:0), instr_b(23:0), and instr _c(23:0), respectively.

Voters are connected at the outputs of the processors. All of the outputs are
voted. The first three voters at the top are 1-bit voters for control signals and the other
three are 16-bit voters for buses. The voter at the top is the voter for the program read
signal. The read signals for the instruction fetch of all three processors are connected to
this voter to be voted. The second one is the voter for data read signals and the third one
is for data write signals. The three 16-bit voters are for the address, the program counter,

and the data bus, respectively.

The outputs of each voter are collected to a bus. Therefore, there are four buses
on the right side. One data bus is at the output of the data voter, named data _p(15:0).
Since each bus on the right side collects the outputs of six voters, each bus is 51-bits

wide.

Because the data memory used in the ISE has separate buses for the input and the
output, data_p(15:0) is generated as a write bus and data_m(15:0) is generated as a read
bus. The read and write signals are active low. Thus, inverters are used to enable buff-
ers. Without a buffer for isolation, data injected at data_m(15:0) will be voted and sent

out to data_p(15:0) which may cause a bus conflict.
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This design so far provides everything needed for a TMR processor based on the
theory described in section B. The next step was to put it on a simulation test bench and
run it. The time constraints are 50 ns for clock high and low time and 10 ns for setup and
hold time. Since only one clock is used in this simulation, the time constraints are trivial.

The simulation results are shown in Figures 27 and 28.

Jtestbench/clk_p I J J J
0 ( 005 0 006

Jtestbench/data_m

ftestbanchfinstr_a

ftestbenchfinstr_b

Jtestbench/instr_c

/testbenchfreset_p y

ftestbenchystall_p
Jtestbench/prog_rd_p |J 1
ftestbench/pe_p [ ————————{0000 fooo1

Jtestbench/read_p

ftestbenchfwrite_p

Jtestbench/cid_1 Doooo

Tooo]

[ Deoood

Jtestbench/cid 0

ftestbench/err

Jtestbenchyv_err

ftestbenchyaddr_p [~ {noo1

estbench/data_p

point 3
Figure 27. TMR Assembly Simulation 1-1

In Figure 27, the data_m bus offers a series of data regardless of whether the
instruction needs it or not. All instruction buses (i.e., instr_a, instr_b and instr _c) have
the same instruction at the same time. The first instruction, LW R1<-Mem(R0+04), is
fetched at point 1. It is not executed until point 2. Since the read signal goes low at point
2, it is reasonable to say it loads data 005A¢. Signals cid 0, cid I and err all report zero
because all instructions are consistent. Notice that the data on the data_m bus changes

while read p is still low. A clipping occurs at point 3.

In Figure 28, another instruction, SW R1—>Mem(R0+02), is fetched. Since R1
had already fetched data at point 2, here we expected to see 005A 6 on the data p bus.
Unfortunately this is not the case at point 5. The simulation tells us that KDLX has the
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read signal active low, but it actually reads data at the rising edge. In this simulation, it

read 00616 at point 3 not 005A ¢, as desired.

Jrestbench/clk_p M \ J ] I | | i
ftestbench/data_m 00E8 006F 0076 007D 0084
ftestbench/instr_a 000000 450102 000000
Jtestbench/instr_b 000000 450102 000000
Jtestbench/instr_c 000000 450102 000000
ftestbenchfreset_p
Jtestbench/stall_p
Jtestbench/prog_rd_p J | [ | [ | | [ |
ftestbench/pc_p 0005 Y006 {ooo7 Jooos Yoo09 {oooa
Jtestbench/read_p
Jtestbenchfwrite_p | |
Jtestbench/cid_1 00000000000 000000000000 Txxcooo0000000 Jrecoxaonooo00 {oooooosoooone froooaioo000000 Tx:oeoo000000
[testbench/cid_0 xxxxxuouuauu'o Foocooapoooon Txxcooo0000000 Jrecooaonoo000 {oooooosoooone froooaoo00o000 Txxoeox00000000
ftestbench/err xxxxxnonnnnn‘n Poocodpooooo [ Pxxoocx00000000 Troco0caona0000 Yoooooonaooono fxoooa00000000_ | Tx00<x00000000 R
Jrestbench/v_err XXXXX00000000 Yo000000000000 |XCO(OXX00000000
Jtestbench/addr_p 0000 Joooz Y0000
[testbench/data_p {oo61 | }
point 4
point 5

Figure 28.  TMR Assembly Simulation 1-2

Since the processor reads at the rising edge, the circuit must be able to keep the
data stable to that point. The simulation in Figure 27 shows that 005A 6 stays for most of
the duration while read p is low. However, the bus changes to 0061¢ at the last instant,
which is not a desirable situation. Thus the next step is to modify the circuit to make the
data stable through the rising edge of read p. Figure 29 is the modified design.

2. Schematic and Simulation 2

A 16-bit latch is added to keep the input data stable. With this latch, the input
data only changes when the read signal changes which should in theory, provide a perfect

timing match. Simulations of this modified TMR Assembly are shown in Figures 30 and

31.

59



¥ = Yoye| 31Q-9|
*91L34ng
a I~
= =
fosio b [F=—— < * g134dng
— T ——
9LaT e, = =
L 3
gi3dng
[EETEETE —| paa -
[FONGTH] s L
e a0 = (s oo LEI=—
P =] sinman
LOTTIER R =< __|__ P p— =
3 Epep
2134ng0
[TECTTE] = [ A
ELrel aip i L]
2 = ¢
F e an = S |M e
i lamed
P A - =
= L. —— losimope
o — (=
[TTE] iR oy i
o =t
TEaL an | s Tma X_U
e an —] osioTan sE —% e
[ engea A = osman T e = (T
L = [ = [ = ¥l
\m.“ 3 ] = iwswioee
LA -
a
L] . — -
[F< T ] —Iﬁn
LN z s X|p
S A
A i —
» N lsmsen
] ﬁm_wuc a 1 — InsLmiepe 1 T ]
v an ..Qu 2
TH0 a0 a0
Pt A _ puRiLl
v £ i bk <5 ]
= Xp
] a3
G ..n_d
oI 0 a2
[GEEERD L3
LCH 1N, .
= =
= & )
" | 3
) =

Modified TMR Assembly
60

Figure 29.



ftestbench/clk_p
ftestbench/data_m
jtestbenchyinstr_a
ftestbenchyinstr_b
stestbench/instr_c
ftestbench/reset_p
[testbench/stall_p
Jtestbench/prog_rd_p
Jtestbench/pc_p
[testbench/read_p
ftestbench/write_p
ftestbench/cid_1
ftestbench/cid_0
Jtestbench/err
ftestbench/v_err
Jtestbenchjaddr_p

Jtestbench/data_p

L 1 J J J J J ]
0000 0045 004C 0053 005A 0061 0068
000000 440104 000000
000000 440104 000000
000000 440104 000000
|| I I | ] ||
F————foooo fooo1 {ooo2 fooo3 fooo4 {ooos
»! |

Toocxoxx0000 YXXXX00000000 Toocodooonooo Tooocxo0000000 Jreocoooenonon Yeoooooonaghoo [oc{Xx00000000 | —

Poooecoonn XO00(X 00000000 Pooocdooiooon Po0x00000000 Trocoowno00000 Jroooocuafoon [ocdkx00000000 Jocamuonso

POOOOOO(0000 HO0COC00000000 _I.‘O(X)O! NO000000 _IXXXX)(DODODQOD luxnmﬂmmn Ycoo000000! n-lxX ¥00000000______ | 1\““"»1-««

KOOOOOHC0000 HOCGX00000000 Jconoooooooohg DA6x00000000

Jooo1 0000 fooo4 000

point 6
point 7
point 8
Figure 30. Modified TMR Assembly Simulation 2-1

Points 6 and 7 in Figure 30 are identical to points 1 and 2 of Figure 27. The im-

provement of the modified TMR Assembly appears at point 8. The latched data is still

available at the point where read p goes high and all three processors now read the value

005A6. The clipping at point 3 in Figure 27 disappears.

Jtestbench/clk_p
Jtestbench/data_m
ftestbench/instr_a
Jtestbench/instr_b
Jtestbench/instr_c
[testbench/reset_p
Stestbench/stall_p
Jtestbench/prog_rd_p
Jtestbench/pc_p
ftestbench/read_p
ftestbenchfwrrite_p
Jtestbench/cid 1
/testbench/cid 0
ftestbench/err
Jtestbenchfv_err
Stestbench/addr_p

[testbench/data_p

J \ | |

0068 006F 0076 007D 0084

000000 450102 000000

000000 450102 000000

000000 450102 000000

LI 1 ] 1 I 1 I 1 ] ]

0005 {ooos fooo7 Yooos Yooog {oooa foooB
I

XXXXX00000000 1xxxxx0(000000 TXXxX00000000 Jecacaononoon Jooooooacoon [xxxxx00000000 1000000000 1000000000

XXXXX00000000_DXxxxx00000000 T0coe00000000 Jecocannonnon Joo00000000000 [XXCX00000000 100000000000 1000400000000

w'eunmu'n_lxxxxxoc 00000 | DocoaK00000000 Jroccowononoon Jaonoaonaoaooe [OOGGKO0000000 [ Poocco0000000___ | ococ00000000
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Figure 31 continues the simulation to store the content of R1 to memory location
02,6 at point 9. Following the signal write_p to point 10, one can find that the data on
data_p is 005A 6. Signals cid 1, cid 0, err and v_err show that no error is reported.

D. TMR ASSEMBLY WITH MEMORIES

Since a working TMR Assembly has been generated, the final step is to hook it up
with memories. The latch added in Figure 29 guarantee that the processors will read
what they need to read. The schematic symbol of the TMR Assembly is shown in Figure

32. The whole circuit is shown in Figure 33.

TMRA

—ck_p prog_rd_p ——
—reset_p read_p——
—stall_p write_p ——
= instr_a(23:0) addr_p(15:0) ——
= instr_b(23:0) pe_p(15:0) ——
= instr_c(23:0) data_p(15:0) ——
=] data_m(15:0) V_ERR(50:0) —
C€ID_0(50:0) ——

CID_1(50:0) ——

ERR(50:0) —

Figure 32.  Schematic Symbol of the Modified TMR Assembly

Many of the signals in Figure 33 are for the purpose of monitoring the simulation.
As a convention, the memory at the left is the instruction memory and the one at the right
is the data memory. Two buffers are used to control the data flow. Data flows into the
data memory only when the write signal is low and flows to the TMRA only when the

read signal is low.

The instruction memory is pre-configured with the following Opcodes: 440301,
413406;¢, and 450407,6. The first one will load data from memory location 014 to R3.
The second one will add an immediate value 06,4 to R3 and save the result to R4. The fi-
nal instruction will store the content of R4 to memory location 07;6. Figure 34 shows the

simulation result.
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Figure 34.
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Unfortunately, no error was reported but no data was sent out from the data mem-
ory. If this design worked correctly, an output value 0009, should be seen when the
TMRA writes to memory. Obviously, this did not happen when addr rom was OE .
Since no timing mismatches occured anywhere, this design was hard to debug. The
modified TMR Assembly works fine without memories, so the problem could have been
the settings of this test bench. The time constraints of this test bench are listed in Table

18.

Processors Memories
Clock High Time 50 ns Clock High Time 50 ns
Clock Low Time 50 ns Clock Low Time 50 ns
Input Setup Time 10 ns Input Setup Time Sns
Output Valid Delay 10 ns Output Valid Delay Sns
Time Offset 0 ns Time Offset 0 ns

Table 18.  Time Constraints of Test Bench for Modified TMR Assembly

Memories have less setup time and hold time, so they should be ready before the
processors need their data. From this point of view, the test bench seemed not to be the
problem. While the problem might have been incompatibility with the choice of mem-
ory, the next alternative approach was to try the original TMR Assembly without the data
latch as shown in Figure 26. Since all input and output signals are the same with this
modified TMR Assembly, the schematic and complete design of the original TMR As-
sembly are still identical to Figures 32 and 33, respectively. Using the same test bench

and simulation as the first design produced the result shown in Figure 35.

This version works. There is almost no timing mismatches and the data clippings
are small enough to be ignored. This circuit sends out exactly the right value after the
last instruction is executed. When addr _rom is at OE s, 0009,¢ is sent out from the TMRA
to the data memory at the lower half clock cycle. The data as seen on out mem has an-
other half clock delay caused by memory. Signals cid 1, cid 0, err and v_err verify that

no error is reported.
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The final conclusion is that the latch added in Figure 29 does not help when the
TMRA is connected with memories. The simulation results in Figures 30 and 31 worked
because the input data was set manually. These manual changes set the error regardless
of the changing of the read or write signals from the processors. Therefore, a latch was

needed in this manual test bench.

When the TMRA is connected with memories, the memories will interact with the
write signal of the KDLX even though the detailed interaction among them are not visible
in the test bench. A latch in the TMRA in this design will ruin the timing between the
TMRA and the data memory. Thus, the simulation result in Figure 34 shows that the
TMRA is totally unable to communicate with the data memory, while in Figure 36, with-
out the latch the design works.

E. TEST ON FAULT TOLERANCY OF TMR ASSEMBLY

The concept of the TMR Assembly has been described and explained earlier in
this chapter. The usage of the voters has been emphasized as well. Since the TMR As-
sembly has been designed and simulated, the next requirement is to test the fault-tolerant
ability. In order to provide errors, three instruction memories are necessary and more
signals need to be monitored.

1. Schematic and Simulation

Figure 36 is a complete schematic with all of the components for the fault-tolerant
testing. The concept is to change one of the instructions loaded into the TMRA and see if
the voters can catch the error, correct it, and report it. Since the inconsistent instruction
will lead one of the KDLX processors to do something different that the other two, voters
should flag the inconsistency and point out the faulty processor, i.e., either cid 1 or cid 0
or both should not be zero. Some bits in the error detection bus, err, ought to be 1 when-
ever any error exists. If all these signals work properly, the TMRA will be able to catch

an error and trigger an interrupt routine.

Three instruction memories, ROM A, ROM B and ROM C, are pre-configured
with three different instruction maps. The data memory at the right side, RAM, has non-

repeated value in its memory locations. This makes the data in the simulation more eas-

67



ily identified since each memory address holds a unique value. Memory maps for the

ROMs and RAM are displayed in Table 19.
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ROM A ROM B ROM C RAM
00 000000 00 000000 00 000000 00 20
01 000000 01 000000 01 000000 01 21
02 000000 02 000000 02 000000 02 22
03 44010A 03 44010A 03 44010A 03 23
04 440203 04 44020B 04 44020B 04 24
05 44030C 05 440A0C 05 44030C 05 25
06 44040D 06 44040D 06 350911 06 26
07 000000 07 000000 07 000000 07 27
08 000000 08 000000 08 000000 08 28
09 000000 09 000000 09 000000 09 29
0A 000000 0A 000000 0A 000000 0A 2A
0B 450106 0B 450103 0B 450103 0B 2B
0C 450208 0C 450207 0C 450208 0C 2C
0D 450309 0D 450309 0D 450302 0D 2D
OE 450410 OE 450410 OE 450410 OE 2E
Table 19.  Instruction And Data Memory Maps

The inconsistent instructions are grayed out in Table 19. The TMR Assembly

simulation is shown in Figures 37, 38, and 39.
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Figure 37.  Simulation of Fault-Tolerant Testing
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In Figure 37, when the signal reset p goes from low to high, the TMRA starts
fetching instructions. Notice the signal out _mem shows 20,6 which is the first value at
address 00;6. The instructions at address 03¢ of the ROMs are fetched at point 1. Fol-
lowing that, three more instructions are fetched in sequence. The first instruction,
44010A 6, is executed at point 2 in Figure 38 while addr rom is 05,6 and addr _ram is
0A6. The addr rom contains the address of the instruction being fetched, i.e., 05;6. The
addr _ram contains the address that the first instruction, i.e., 44010A s, is using to access

RAM. In this case, 0A¢ is the correct address for this first instruction.

From this point in the simulation, inconsistencies have been introduced in the in-
struction memory. The bit distribution of the bus needs to be introduced in the next sec-
tion before the simulation analysis is presented.

2. Bit Distribution

Recall the schematic in Figure 26. Four signals (i.e., ¥V ERR, CID 0, CID 1, and
ERR) are collected into four different buses and each bus is 51-bit wide. Since one 51-bit
bus consists of outputs from 6 different voters, each voter has a range in the bus distribu-
tion. By looking at the bits in the distribution, one can tell which signal on which proces-

sor is wrong. The bit distribution for CID 1, CID 0, and ERR is shown in Figure 40.

CID 1(50:0) & CID 0(50:0) & ERR(50:0) Bit Distribution

data(15:0) pc(15:0) addr int(15:0) wr | rd | prog rd

50 35|34 19 | 18 31 2 1 0

Figure 40.  Bit Distribution of CID I, CID 0 and ERR Buses

In Figure 40, the bit distributions of all three buses are identical. For example, a 1
at bit 20 of the ERR bus means that one of the KDLX processors has an error in its pro-
gram counter. At the same time, bit 20 of the CID I and CID_ 0 buses will point out the
faulty processor.

3. Simulation Analysis

The three instructions fetched by the 7TMRA at point 1 in Figure 37 are identical so
no error is reported at point 2. Since there is no error in any one of the processors, the

cid 1 and cid 0 buses will not identify any processor. It was mentioned that the memory
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needs a half clock cycle to send out data once it receives signals. That is why the first
data is not on the out mem bus until point 3. It can be verified that the TMRA is loading

a correct value.

When the instructions become inconsistent, the error detection signal is no longer
zero. Meanwhile, the cid 1 and cid 0 locate the faulty processor. This can be checked
from point 4 to 6. Figure 41 is the bit distribution of the error detection signals for the
first Opcode, 44010A 6. The hexadecimal number in the simulation is translated to a

binary number when doing this data analysis.

Bit 50 A9 11 10 9 8
err O Ou e 0o 0 0 0

—
th

O~
]
o=
fa=] V5]
[ | O]

Crror

Figure 41. ERR Analysis for the First Opcode

It is obvious that the sixth bit is inconsistent in three processors. In order to verify
the error, the signals cid 1 and cid 0 should be analyzed. Converting the hex numbers in
the simulation to binary numbers and comparing the bit distribution with Figure 40 indi-
cates that (Figure 42) the inconsistent bit is on the address bus and Processor A is the
faulty processor. Recall from Table 17 that cid [ is the most significant bit, so 01, stands
for the first processor (i.e., Processor A). It is true that the instruction at address 01;¢in
ROM A is the actual location of the error, but since this instruction is only sent to the first

processor in the TMRA, Processor A is identified as faulty.

prog rd

WI .
addr _int(15:0) J :
_A
7= = l
Bit SO A9 e I 10 9 8|7 & 5 413 2 1 0
Gl B Buussmissnmnessmsmis o 0 0 oflofoYo oo 0 0 0O
cid 0] 0 0uviiiiiiiiiiii, 0 0 0 olo\tJo oo 0 0 0

Processor A

Figure 42. CID I and CID 0 Analysis for the First Opcode
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The reason that the error is at bit 6 is because that is the only location where the

output bits are not consistent in the three processors. Figure 43 shows the situation.

Hex Binary
Correct Address 0B 0000 1011
Wrong Address 03 0000 0011
bit 3

Figure 43. Address Comparison for the First Opcode

The second Opcode in ROM B has an incorrect destination register. Since there
are no output signals on KDLX for the destination register, point 4 in Figure 38 reports
no error, even though this wrong Opcode loads a correct data into the wrong register.

The contents of R3 are now inconsistent between the three processors as are the contents
of R10. This kind of error will only be found when the content of the faulty register is
used. Point 9 in Figure 39 stores the contents of R3 to memory location 09;6. It is known
that the data in R3 is wrong in Processor B, but the Opcode difference at point 9 also
means that the memory address of Processor C is wrong. Figure 44 shows the simulation

result for point 13 in Figure 39. Six inconsistent bits were caught.

Bit |50 49 48 (47 46 45 44 (43 42 41 40([39 38 37 36|35
err o o0 o]0 O 0o O[O0 O 0 17]O0 1 I 0] 0
Hex 0 0 1 6

Bit [ 34 . e 87 6 S5 4 (3 2 1 0
CIT | Ot 0] 0 I 0 1 I 0 0 0
Hex O 0 5 8

Figure 44. ERR Analysis at Point 13

The contents of R3 in Processor B are zero, but in Processors A and C they are
2Cy6. For cid 1 and cid 0, it is expected that the data portion in the bit distribution indi-
cates that Processor B is wrong. Figure 45 shows the inconsistent bits between the cor-

rect and wrong data.
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Hex Binary
R3 of A and C (correct) 2C 0010 1100
R3 of B (wrong) 00 0000 0000
bit 5
bit 3
bit 2

Figure 45. Data comparison for R3

The bit distribution of cid I and cid 0 should put 002C;¢ in the data portion and

indicate all inconsistencies caused by Processor B. Figure 46 illustrates that it does.

Bit |50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35
cqdl {0 0 0 0 0 0 0 0 0 0 f1yo0 {1yf1}y0 0
cid0 |0 0 0 0 0 0 0 0 0 0 X0/ O X0OJNOS O O
\ J N PN
h hd
0 0 C

4

Processor B

Figure 46. CID I and CID 0 Data Portion Analysis at Point 13

In addition, the address differences from Processor C at point 9 should also be in-

dicated by cid [ and cid 0. This is shown in Figure 47.
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Hex Binary
Address of A and B (correct) 09 0000 1001
Address of C (wrong) 02 0000 0010
At
Inconsistent
portion

prog rd

Wr |

addr int(15:0) l re

A

' ™ l
Bit [ 34, i & 7 6 5 4 3 2 | 0
cid 1T [0 0 0 0 1 0 0 0
Cld O ) 0L e 0 0 I 0 1 I 0 0 0

—
inconsistent portion
e BN J o\ J
Hex O, 0 5 8

Figure 47. CID I and CID 0 Address Portion Analysis at Point 13

Notice that both cid I and cid 0 at point 13 have hex number 58. The inconsis-
tent bits of the addresses are reflected correctly in the bit distribution. The Processor C is
identified as the faulty one that gives a different address to the voter than the others. This
proves that cid 1, cid 0 and err signals can deal with these kinds of multiple errors and

still report flawlessly.

Following the same procedure to analyze data on buses, one should be able to re-
alize how the voter works and the way to utilize these signals for an interrupt routine.
The rest of the simulation also performs correctly. The Opcode at address 06,5 of ROM
C is a disaster since there is no such instruction. Based on the experience just learned,
this kind of error will still be corrected. The inconsistency of register contents will be
corrected the next time they are used and the wrong addresses will not affect anything as

long as the other two addresses are correct. Correct data will still be fetched at point 7 in
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Figure 38. The memory output data bus switches back to 0020,¢ at point 8. Next, three
store instructions are fetched in series. The first data written to memory shows up at
point 10. Simple address inconsistencies at point 11 and 12 are easily analyzed. Errors at
point 14 are detected, even though all three Opcodes, 4504106, are the same. That is be-
cause the data loaded into R4 earlier was different and the error occurs only when R4 is
routed to the output.

F. IMPORTANT SIMULATION CONCEPTS REVIEW

Simulation results are used a lot in this chapter to explain the operation of the
TMR. Fundamental ideas on how to construct a test bench and how to analyze results
have been established. Due to the different properties of the different components, a de-
sign may not work when additional components are connected. Generating a good test
bench is not easy since most timing problems are unpredictable. Some important knowl-
edge for simulation needs to be introduced in order to help shrink the time for invention.

1. KDLX Was Designed to Work with Asynchronous Memory

In a personal conversation with Dr. Kenny Clark, I learned that the KDLX was
designed for an asynchronous memory. Although it will work with a synchronous in-
struction memory, an asynchronous memory is recommended since one should assume
that the instruction memory and the data memory are in the same physical memory. Al-
ways provide some different time constraints between KDLX and memories when gener-
ating a test bench.

2. Start with A Simple Test Bench First

Trying to test everything on a new design is a bad idea. Too many signals need to
be tracked and multiple errors are hard to debug. It is a good idea to start with a simple
test bench which only tests a small part of the design. Revise the test bench to become
more complicated step by step. It is also good to individually test every component gen-
erated before constructing a top-level design.

3. Test Bench Is Optimized for the Current Design

As introduced earlier, the simulations have different time constraints. A test
bench is used to check to see if a design works under reasonable assumptions. Circuits

will be modified many times until the full design is complete. It is hard to specify the
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requirement for a test bench before a circuit is actually built, so it is almost impossible to
have an ideal test bench for a full design and every single component. In addition, a test
bench that works on the top-level design may not fit to a single component. Timing
mismatches always change with different wiring.

4. Keep Old Designs

It was shown in the TMR Assembly schematic that sometimes an old design is the
real useful one. Incorrect settings for a test bench can mislead a designer to make a
wrong decision and a modified design can become useless when other components are
connected. Features on different components sometimes will balance out timing mis-
matches between them. Going over previous designs helps a designer to retrieve original
thoughts and keeping those files available is important.

5. Working on the Copy of Source

Based on personal experience, it is good to add a copy of a tested circuit into a
large design rather than adding the original. This not only keeps the integrity of the
original file but also makes it easy to review. Without making a copy, the new design
will associate with the original design. Any modification in the new design directly af-

fects the original file. Therefore, it will be impossible to keep the original source file.

Keeping the integrity of each circuit is also important. People always want to see
and test the fundamental design before they jump into the full design. For example, a
new designer may want to understand voters before realizing the TMR Assembly. Mak-
ing all correct and incorrect circuits into one project is convenient for a designer, but this
does not help other people to understand. By the way, having all sources in one project

lacks independency while doing individual tests.

There is no question that making a copy of a source file definitely increases the
size of folder and requires more time to manage individual projects. The big benefit of
this is that a designer can always have original designs in hand as well as all projects left
are tested and ready to go. A new designer thus has a chance to see the function of a
voter before sinking into the confusion of the complete TMR Assembly. Since another
new project will be generated once a project has failed, a design like the TMR Assembly

may have different versions. The useful version contains only useful schematics and test
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benches. From this point of view, all projects left are not only useful but also have few or

no junk sources inside.

Since hard drive space nowadays is huge and cheap, working on a copy file not
only gives people a chance to review but also make all projects look clean and easy to
understand.

G. CHAPTER SUMMARY

This chapter introduced the kernel of the full TMR design, i.e., the TMR Assem-
bly. Understanding how voters catch errors and how to analyze simulation results is the
main point in this chapter. Many explanations of simulation results are provided in order
to help one realize the spirit of the TMR design. After reading so many simulations, one
should have a feeling on how to use and generate a test bench. A quick review on simu-
lation concepts is put at the end of this chapter after one has studied some simulations and

before he/she jumps into a more complex design.

Other components associated with the TMR Assembly like the Reconciler, Inter-
rupt and Error Syndrome Storage Device (ESSD) will be explained in following chapters.
The Reconciler is an interface between KDLX and memory; the Interrupt is the one gen-
erating ISR; the ESSD is responsible for storing error syndromes whenever an error oc-

curs.
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VI. RECONCILER

Due to the different memory architectures between KDLX and CFTP as described
in Chapter IV, the Reconciler is used to satisfy the timing requirements on both sides and
properly route the data. Since KDLX can only access memory via load and store instruc-
tions, the Reconciler only needs to monitor the read and write signals from KDLX and di-

rect the data to the correct destinations.

In this chapter, no error detection or correction will be discussed since the Recon-
ciler is not responsible for this. The TMR Assembly is responsible for error detection.
Error correction is done by the /nterrupt and the voters in the TMR Assembly. Storing
the error syndromes is the job of the Error Syndrome Storage Device (ESSD).

A. CONSTRUCTION AND FUNCTION

Only one physical memory is available in the CFTP. In order to make this one
memory act as the both instruction memory and data memory in each KDLX clock cycle,
the physical memory has to run at twice the speed of KDLX. For the same reason the
Reconciler has also to run twice as fast as KDLX. For each KDLX clock cycle, one ad-
dress bus access and one data bus access for instructions needs to be available. Mean-
while, one address bus and one data bus access for data also needs to be available. To
fetch an instruction and do a data read or write, the Reconciler has to act as an instruction
memory in the first half of the KDLX clock cycle and act as a data memory in the second
half of the KDLX clock cycle. This function is illustrated in Figure 48.

KDLX clock | | |
pc(15:0) is available
KDLX instr(23:0) is available
signals addr_int(15:0) is available
data(15:0) is available
Memory or
Reconciler —I
clock

Instruction fetch Data read or write

Figure 48. Illustration of Reconciler Function
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The Reconciler is composed of a state machine coded in VHDL and is presented
completely in Appendix C, section A. The state machine contains five states: one starting
point, two for normal operations, one for read, and one for write. This function can be

seen clearly in Figure 49.

State 1

ReadState

rdr=0andwr r=1

reset r=1

WriteState

Figure 49.  State Machine of the Reconciler

The name of the state is on the top of each circle except for the initial state named
State. The number in each state is the state number designed for tracking purposes in the
simulation. The two normal operations, State() and Statel, are identical and are for fetch-
ing instruction. Without reading or writing, these two states just pass the program
counter to memory, fetch the instruction and send it back to the KDLX. At this time, the
memory acts as a ROM and its data-input bus is in a high impedance state. Since only
the instruction bus is used, the data bus of the KDXL is also in a high impedance state.
State Statel is a duplication of State( so the state machine can be revised to stay at State()
when neither rd_r nor wr_ris 0. The reason for using two states is to provide tracking in
simulation. Since the Reconciler runs twice as fast as the KDLX, reading and writing ac-
tions only occur at State(). Without the separation into two states, it is hard to tell if a

read or write occurs at the proper state.
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When rd_ris 0 and wr_r is 1, the state machine goes to the ReadState. KDLX
wants to read data from memory so the Reconciler will pass a high write signal to the
memory and direct data from the memory to KDLX. When rd ris 1 and wr_ris 0, the
Reconciler knows that KDLX wants to write data to the memory, so it passes a low write

signal to memory and directs data from KDLX to memory.

The initial state, State, is not used until the next reset. It is null and there are no
actions in this state. Without this state, the state machine would use State0 as the initial

state and start at Statel after reset.

B. SCHEMATIC AND SIMULATION OF RECONCILER ONLY

Converting a VHDL code to a schematic symbol is a useful function in the ISE

software. The schematic symbol of Reconciler is shown in Figure 50.

rec

—clk_r addrout_r(15:0) ——
—{reset_r dataout_r(23:0) ——
— s wrout_r ——
——{wr_r

F—— addrin_r(15:0) state_r(3:0) ——
= pc_r(15:0) instr_data(23:0) ——
= datain_r(23:0) mem_data(15:0) ——

Figure 50.  Schematic Symbol of Reconciler

Simulation of the Reconciler itself is quite simple. Since it is basically a state
machine, a state will either stay at current state or jump to a new state every clock cycle.

Figure 51 is the simulation result.

Jtestbenchyclk_r
Jtestbench/reset_r

/testbench/rd r

ftestbench/wr_r

ftestbench/addrin_r 0000

ftestbench/pc_r |0

ftestbench/addrout_r

Stestbench/datain_r |0

Jtestbench/instr_data | L000000

ftestbench/mem_data

/testbench/dataout_r

ftestbench/wrout_r

I

Jtestbenchystate_r | [0

Figure 51.  Simulation Result of the Reconciler
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The signal at the bottom in Figure 51 is the state number used to track which state
is active. The state machine starts at State( after reset. The signal addrout r is the bus
connected with the memory address bus. It sends out either pc_r or addrin_r depending
on whether the system is doing an instruction fetch or a data read/write. In State0 and
Statel, the addrout r is always the same value as pc_r. The memory data output bus
connects with the signal datain r on Reconciler and sends out either an instruction or a
data value. When rd_r is low, data on datin_r will be forwarded to mem_data which
connects to the data bus of KDLX. When wr_r is low, the state machine goes to the
WriteState. At this state, data from KDLX is available on mem_data and Reconciler will

direct this data to dataout_r which connects to the data input bus of memory.

The instr _data is never in a high impedance state regardless of whether the data
on datain_r is an instruction or not. The reason is to make an instruction stay available
until the next KDLX clock cycle. Even during ReadState and WriteState, the next in-
struction for the KDLX is alive on the instruction bus. Remember that the Reconciler is
twice as fast as the KDLX. If the next instruction is only available for the first half of the
KDLX clock cycle, it will not be fetched at the rising edge of the next KDLX clock. This
concept will be described again when the Reconciler is hooked-up with a KDLX proces-
Sor.

C. SCHEMATIC AND SIMULATION OF RECONCILER WITH KDLX

The last step for testing the Reconciler is to simulate it with a KDLX. The sche-

matic of this part of the design is shown in Figure 52.

82



addr_box
=

rec

dlx

Figure 52.  Schematic of Reconciler with KDLX and Memory

The memory offered in the ISE software is not a real Von Neumann architecture
Instead of having one bi-directional data bus, the Reconciler is designed to have two
separated buses for data, datain r(23:0) and dataout r(23:0). The mem_data(15:0) on
Reconciler is bi-directional in order to transfer data back and forth with the KDLX.
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The simulation for this circuit is done with a series of load and store instructions
in order to see if the Reconciler can handle both instructions and data correctly. Figure

53 is the first part of the simulation result.

ftestoenchyclk_p | | 1 [ 1 [ 1 [ 1 [ l [ \ [ l [ \ [ L I [
ftestbenchvek v | [ [ [ L[ 1 1 Sy 1 [y Sy s Yy B O
ftestbench/clk_m N Ty U I O I

Jtestbench/en_ram

Jtastbench/reset_p

1™
Jtestbenchfreset_r Py

frestbench/stall_p

Jtestbench/prog_p J J | | | ‘
ftestbench/pc_p | F————————0000 fooo1 Joooz Jooo3

Jtestbench/addr_p | J0001

=]

ftestbenchyinstr_p | 000000 {440241 1440342

Htestbench/read_p L

I I I
I i{ H
0000 o }8 foo
Jtestbenchjaddr_m fo1 o2 ¥o3 Yo fa0 Jos fa1 Jos Ta2
¥ H I
I I

ftastbenchjwrite_p

stestbench/din_m

-

Jtestbench/dout_m 000000 Jaag1r40 Yaa0241 ¥a40342 ¥a40443 flooooaa f440544 fooooss [440645 {oooocc {oooooo foooopofoooooo Joouose

Jtestbench/wrout_r

testbench/data_p B

/ftestbench/state_r |-]0 I Jo 1 0 I1 0 1 0 2 0 2 0 2 0 12 0 2

1

point 1 point 2

Figure 53.  The First Part of the Simulation Result for Reconciler

In Figure 53, the first instruction in memory is fetched at point 1 when pc_p was
sent. It can be seen clearly from the status of state r that the Reconciler is in double
speed. At point 2, the Opcode 4401406 is executed and wants to load data into R1. At
the same time, the KDLX is going to fetch the Opcode 4404435. The address of data for
the first instruction is available at point 3 in this time interval. Therefore, the signal
addr_m fetches pc_p at the first half of the KDLX clock cycle and fetches addr p at the
second half of the KDLX clock cycle. The data at memory location 0040;¢ thus is sent
from memory to KDLX when state ris 2. Notice that at this time interval Opcode
440443 ¢ 1s available on the bus until the next KDLX clock. This is important since
KDLX is triggered at the rising edge of the clock. Failure to keep an instruction until the
next rising edge will mean that the KDLX will not be able to fetch this instruction and the
memory location for data will not appear at point 4. This is why the instruction bus is not
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set to a high impedance state at the ReadState and WriteState in the Reconciler. The rest
of this simulation in Appendix A, section H does a series of writes followed by a series of
reads in order to check if the Reconciler functions properly.

D. TIMING CONCERNS

An added complexity for this simulation is the fact that it has three different
clocks. To make this simulation work, the time constraints of the test bench have to be
set properly. The sequence of execution in this circuit is that the KDLX sends its pro-
gram counter to the Reconciler first. Then Reconciler forwards this address to the mem-
ory. Next, the memory selects the instruction and sends it to the Reconciler. Finally, the
Reconciler forwards this instruction to the KDLX. This is a simple example of how

KDLX fetches an instruction.

In order to successfully fetch an instruction, the KDLX has to have its program
counter ready before the Reconciler needs it. The Reconciler has to have the address set
before the memory is ready to receive it. Considering setup time and hold time for each

clock, the relationship among these three clocks is shown in Figure 54.

KDLX
Clock — |
KDLX

Setup Time Hold Time Setup Time Hold Time

Reconciler
—— —— e
Setup Time Hold Time Setup Time Hold Time Setup Time Hold Time
Memory
L L
Setup Time Hold Time Setup Time Hold Time Setup Time Hold Time

Figure 54. Timing Relationship Among Clocks

It does not matter that the Reconciler and memory clocks are faster than KDLX
since the KDLX has to be ready whenever the Reconciler needs data. In Figure 54, all
three clocks are shown together as they were in the simulation for comparing timing re-

quirements. Since the Reconciler has a hold time longer than KDLX, the KDLX will be
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ready before the Reconciler is ready. The Reconciler will be set before the memory

needs input signals.

When KDLX is executing a read-data instruction, the memory will have the data
available later than the KDLX starts to read. Therefore, a little clipping occurs every
time that KDLX reads data. To minimize this clipping, the setup and hold time between

the three clocks have to be as close as possible.

In this simulation, if any two clocks have identical setup and hold time, the testing
will fail. Since the Reconciler is a state machine, the current state will jump to a different
state if the conditional requirements are not met in time. This causes the KDLX to fail to
interact with the memory; therefore the following instructions will not be fetched.

E. CHAPTER SUMMARY

This chapter introduced the function of the Reconciler in the TMR design. This
component is designed to consolidate two different architectures in a circuit and is not di-
rectly associated with error detection or correction in the TMR. This is the first time in
this thesis that time constraints were discussed in detail since there are specific timing re-
quirements for the Reconciler. The concept of establishing the setup time and hold time
for a test bench is more important after this chapter because more components are in-

volved in the TMR design.

Another component (called Interrupt) is discussed in the next chapter. This com-
ponent leads the TMR design to the Interrupt Service Routine (ISR) when an error oc-
curs. How to intercept the current execution of the KDLX to start an ISR and how it

works with other components in the TMR design will be described as well.

86



VII. INTERRUPT

The TMR Assembly, consisting of processors and voters, is able to detect an error
and correct it. Even though voters are able to correct errors as they come out the system,
whichever of the KDLX processors that caused the error will still have the wrong data in-
side. If an error in one processor is not corrected in time, another error occurring in an-
other processor may not be detected by voters. As was described earlier in Chapter V, a

majority voter is not able to handle multiple identical errors.

In order to correct an error in the KDLX, the normal operation has to be stopped
and all contents of registers in the three processors have to be voted. The voters will cor-
rect any inconsistency between the three processors in this process while storing all cor-
rect data into memory and then reloading them back into the original registers. Once this
procedure is done, all contents of registers are identical between the three processors.
The Interrupt is the circuit used to stop normal operation and switch the circuit to do this
error correction.

A. CONSTRUCTION AND FUNCTION

The Interrupt is also a state machine coded in VHDL. The state machine is
shown in Figure 55. The concept is to have it look for the error detection signal from the
TMR Assembly. If an error occurs, it will latch the current program counter and send out
a TRAP instruction to processors. Two NOPs follow the TRAP instruction in order to
clean the pipeline of the processors. Only two NOPs are needed because the TRAP in-
struction will start to be executed right after the second NOP. Any instruction after the
second NOP will either be useless or mask out instructions that the TRAP wants to fetch.
After the second NOP, the TMR Assembly is in the ISR and the Interrupt waits for an

RFE instruction from memory, placed to mark the end of the ISR.

When the processors receive the TRAP instruction sent from Interrupt, they jump
to a specific memory location and start the ISR for storing and reloading the contents of
all of the registers. The last instruction in the ISR is the RFE instruction. When memory
sends out this instruction, it will be seen by the Interrupt and the Interrupt will replace

the RFE instruction with a new Jump instruction. This new Jump instruction is con-
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structed by the Interrupt from the Opcode C8;¢ plus the latched program counter to force

the processors to jump back to where the trap occurred.

err=1

reset_i=0

State_1 NopState_0

reset i=1

’ G NopState_1

no RFE

Figure 55.  State Machine of Interrupt

Recall the function of TRAP and RFE instructions in Table 13. The reason to re-
place the RFE instruction with a Jump instruction is because the RFE instruction does not
jump back to where the TRAP instruction occurs. It is known that the RFE will jump to
the address stored in the IAR which is two clock cycles later than when the TRAP oc-
curred. The choice was between revising a tested version of KDLX and building a sepa-
rate circuit to be able to generate a new Jump instruction. The separate circuit is easier to
achieve for this Interrupt since it is a state machine and is coded in VHDL. First, a state
machine can do several different things in one clock cycle. Because the new Jump in-
struction is not needed until the BackState, two NOP clock cycles are sufficient for gen-
erating an instruction. Second, data on different buses can be more easily combined in

VHDL than other methods, e.g., schematics.

The Reconciler discussed in the previous chapter only allows an instruction to be
fetched in the first half of the KDLX clock cycle, but the state machine shown in Figure
55 works with a KDLX at the same speed. In order to interrupt and insert instructions at

the correct timing, the Interrupt has to match the speed of the Reconciler. Doubling the
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speed of the Interrupt is not the same as that of the Reconciler since the Interrupt has
several different states in series. The methodology here is to duplicate each state, which
makes the state machine twice as long. The new state machine is shown in Figure 56 and

its VHDL code is in Appendix C, section B.

reset_i=0

State0_A State0_B TrapState_A TrapState_B

BackState_B NopState0_A

BackState_A NopState0_B

WaitState_A NopState1_B

WaitState_B NopState1_A

Figure 56. New State Machine of Interrupt

The first two states, State() A and State0 B, do not need to be duplicated in spite
of the even number of states. The state machine is also revised so that only State0 B can
go to TrapState A. In spite of double speed, State( A still needs to go to State() B even
if an error occurs at State) A. On the other hand, the KDLX reads and writes data at the
falling edge of clock, which means that a data error always occurs at State0 B. After
NopStatel B, the TMR design starts the ISR and the WaitState B waits for the RFE in-
struction. Once the RFE instruction is sent out from memory, the Interrupt takes over the

instruction bus again and injects the new Jump instruction at the BackState A. The TMR
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design goes back to normal operation when the new Jump instruction is executed by the
processors.

B. SCHEMATIC

The functions of Interrupt can be easily understood from the simulation result
shown in Appendix A, section I. The simulation for the Interrupt only is not explained
here since the state i indicates active states in Figure 56 explicitly. Figure 57 is the

schematic symbol of Interrupt.

Interrupt
—clk_i sel_i(23:0) —-H
reset_| pe_out(15:0) ——
—|ermr
trap_i(23:0) ——
E—rfe_i(23:0)
— pe_in(15:0) state_i(3:0) ——

Figure 57. Schematic Symbol of Interrupt

The input signal err is used to monitor the occurrence of an error. When this sig-
nal goes high, the ISR starts. Once the ISR is triggered, the program counter where the
error occurs is sent to pc_in(15:0) where it will be latched and this latched program
counter will be output instantly at pc_out(15:0). The Interrupt uses signal sel i(23:0) to
switch a mux and sends out the TRAP instruction via trap i(23:0). After that, sel i(23:0)
switches the mux back to normal and the input signal rfe i(23:0) starts monitoring the
Opcodes passing through on the instruction bus. When the RFE instruction is sent out
from memory, sel i(23:0) actives again and trap _i(23:0) sends out the new Jump instruc-
tion. Consequently, the TMR design is back to its normal operation. Figure 58 is the de-

sign of the Interrupt with a processor and two memories.
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Figure 58.  Schematic of the Interrupt with KDLX and Memories
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The mux located between instruction memory and KDLX is used for Interrupt to
inject the TRAP instruction. Normally, the KDLX fetches instructions from the instruc-
tion memory and the mux allows this traffic to pass. When an error occurs, the mux con-
trolled by Interrupt immediately switches to the other bus and a TRAP instruction gener-
ated by the Interrupt will be sent to the KDLX. The original instruction at this time is
blocked on the bus and the KDLX receives the TRAP instruction instead. The Opcode
for the TRAP instruction in this thesis is 280030, which uses memory location 0030, as
the starting point of the ISR. This value can be easily changed in Interrupt’s VHDL
code. The basic idea is not to have the ISR address too close to the address of normal op-
erations in memory to keep it from being overwriten. Simulations in this thesis are care-
fully designed and small address spaces let people see the complete implementation in
memories.

C. SIMULATION

Table 20 shows the contents of the memories and the registers before and after the

simulation.
Instruction Mem Register Data Mem
00 2D 00 00
01 2E 01 0044 01 0044
02 | 440101 | 2F 02 0045 02 0045
03 | 440202 | 30 | 000000 03 0046 03 0046
04 | 440303 | 31 | 000000 04 0047 04 0047
05 | 440404 | 32 | 000000 05 0048 05 0048
06 | 440505 | 33 | 450420 06 0049 06 0049
07 | 440606 | 34 | 450520 07 004A 07 004A
08 | 440707 | 35 | 450620 08 004B 08 004B
09 | 440808 | 36 | 450720 09 004C | 09 | oo04C
0A | 440909 | 37 | 411A11 10 0055 0A
0B | 450110 | 38 | 411B22 1 0066 0B
oCc | 450211 | 39 | 411C33 12 0077 oc
oD | 450312 | 3A | 000000 13 oD
OE | 450413 | 3B | 000000 14 OE
OF | 450514 | 3C | 000000 15 OF
10 | 450615 | 3D | F80000 10 0044
11 | 450716 | 3E | 000000 1 0045
12 | 450817 | 3F | 000000 12 0046
13 | 450918 | 40 | 000000 13 0047
14 | 450A19 | 41 14 0048
15 | 450B1A | 42 15 0049
16 | 450C1B | 43 16 004A
44 17 004B
: : 45 18 004C
2C 46 19

Table 20.  Tables of Registers and Memories in Simulation
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Part of the complete simulation is shown in Figures 59 and 60. An error is seen at
point 1 and the instruction at point 2 is intercepted by the Interrupt. It can be seen clearly
that the value of signal se/ i changes and a TRAP instruction followed by two NOPs are
injected at point 3.

Jtzstbench/clk_p AN S ) S S s (S e S S I S B i
fresthenctyakm [ L L L L LI LML L LML L L L L L L L L Ly
ftestbench/en_rom

Jtesbench/en_ram

Jtestbench/err

ftestbench/reset_p

Jtestbench/reset i

Jtestbench/stall_p

Jtestbench/addr_ram 0

ftestbench/data_p

Jtestbench/din_ram

[ftestbench/dout_ram

Jtestbench/instr_pass

ftestbench/pc_p

ftestbench/prog_p

Jtestbench/read_p

/testbench/write_p

ftestbenchysel i [[FFFT

testbench/trap_i

/testbench/pc_out

ftestbenchystate_i o |1 o 1 fo |a 0o 1 Jo I

point 1 e point 3 point 5
point

point 4
Figure 59.  Partial Simulation Result of /nterrupt with KDLX

One important thing here is that the time an error is seen is not the time an error
occurs. The reason is because the KDLX is pipelined and the memory stage is the fourth
pipeline stage. Including the time for the Interrupt to respond, the total delay from the
instruction causing the error is four KDLX clock cycles. This feature cannot be seen in

this simulation because the error was set manually.

The program counter latched by the Interrupt at point 3 is 0008 in this simula-
tion. The instruction intercepted is 440606, which is at address 07,¢ in Table 20. The
concept is to jump back to where the TRAP was inserted. Theoretically, the program
counter latched should be 00076 not 0008,¢. Because of the change of the pc_p at point
3 and the instruction delay from memory, the latched program counter is a wrong value.

Another possible reason is since this error is generated from the test bench not from the
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circuit itself, the timing for the occurrence of an error could be in the wrong place. This
issue will be discussed again and resolved in Chapter VIII when the full design without

ESSD is presented.

The TRAP instruction inserted at point 3 affects the circuit at point 5. Opcodes
from instruction memory address 30;6 to 40,6 are the ISR. Instructions in the ISR can be
related or unrelated to the original commands, but the purpose is to correct the error.
Since there is no actual error in this simulation, the ISR is designed just to do something
else. The full function of the real ISR is to store all contents of the registers to memory

and reload these contents back to registers. The ISR in this simulation is incomplete.
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Figure 60. Partial Simulation Result of Interrupt with KDLX (continued)

Storing the contents of R4 to R7, the simulation shows R6 and R7 at point 6 are
not loaded with any value. This proves that the /nterrupt can successfully insert the
TRAP instruction. At point 7, the RFE instruction (i.e., F80000¢) is detected by the In-
terrupt. Instantly, sel i switches to zero and frap i sends out the new Jump instruction,
C800056. As described earlier, the new Jump instruction is formed from (C8;¢+latched
program counter). Therefore, the Opcode C80005,¢ is generated and executed at point 8.
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The rest of simulation in Appendix A, section J checks the contents of registers to verify
the operation.

D. CHAPTER SUMMARY

The functions of the Interrupt were described and simulated in this chapter.
When an error occurs, the Interrupt should lead the TMR design to do error correction
and also be able to bring the circuit back to its normal operation. The purpose is to cor-
rect an error as soon as possible after it occurs. Thus the error will not be propagated

making the circuit lose control.

The first design of the Interrupt was to replace instructions in memory in order to
implement the ISR. This could not be done in this design because a ROM is used as the
instruction memory. Since the real CFTP design uses only one RAM, the instruction set
could be changed in memory. However, changing original instructions is the last thing

people want to do because it may cause an unrecoverable error.

In the next chapter, the full design without £SSD will be introduced. The usage
of the ISR will be described clearly and the interactions between Interrupt and Reconciler
will be expressed as well. The simulation of the full design should clarify any confu-

sions among the different components.
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VIII. THE FULL DESIGN WITHOUT ESSD

The full design in this chapter consolidates the TMRA from Chapter V, the Recon-
ciler from Chapter VI and the Interrupt from Chapter VII. The TMRA contains three
KDLX processors and six voters. All outputs of the processors are voted and any error
will be corrected. The Reconciler is responsible for integrating the Harvard and Von
Neumann architectures. It runs in double speed in order to act as an instruction memory
in the first half of the KDLX clock and as a data memory in the second half of the KDLX
clock. The component used to correct errors besides the voters is Interrupt. It intercepts
normal operation of the TMRA when an error occurs, forces it to do an ISR and makes it
jump back to normal operation after the error is corrected. The error signal for the Inter-
rupt is given by the TMRA. For this design the voter is assumed to be error-free and the

voter error detection signal is not used.

Each component discussed earlier has been simulated to prove its function with or
without the KDLX and memories. Simulating all these components together in a circuit
should be able to catch and correct an error. This is the goal for the full design and its
function will be proved in this chapter.

A. SCHEMATIC

The TMRA itself basically connects with the memories as just one KDLX would.
Most input and output buses are the same except the number of signals increases or de-
creases. The Reconciler sitting between the TMRA and the memory has to receive all
output signals that the original KDLX has, except the program read signal, i.e., the read
and write signals, the program counter, the address for data, and the data bus. The Inter-
rupt needs the error signal to trigger the ISR, the program counter to generate a new

Jump instruction, and instructions for doing TRAP, RFE and Jump.

In order to test the circuit, several buses and memory have to be triplicated. The
way to test the error handling of the system is to program an inconsistency into one of the
three memories and expect that the circuit can catch the error and correct it. Without this

artifice, the Interrupt will never work and the ISR will never be triggered. The alternate
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would be to assign an error signal to change data on the bus manually in the test bench

and that is not realistic. The full design constructed for testing is shown in Figure 61.

_RAMA

__RAMC

addr_box

Reconciler

Interrupt
e
=
abe_13 81 =
{msd o>
D
[ES——enr
z o
— sty
= a
R —E=C
i1 s = (g
o B
TEop
AL

[
EED——
i
| o LT
G

M2_1

or51to1
P peE——
= i

Figure 61. The Full Design
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In Figure 61, only the Interrupt is unchanged since it does not have any data bus
connections. Three RAMs are used, and a bus connects each to one of the processors.
Therefore, both Reconciler and TMRA have more buses than before. The three muxes at
the bottom left are used to intercept the TRAP and Jump instructions. The box at the top
left (called or51tol) is coded by VHDL and ORs 51 bits from ERR(50:0) into 1 bit. Any
error that occurs at any output signal of the KDLX will trigger the ISR. The revised
VHDL code for Reconciler is in Appendix C, section C.

Because the Interrupt must monitor a memory bus in order to detect the RFE for
testing, one of the memories must always be correct. This design chooses RAM A as the
monitored RAM; therefore its contents are always correct.

B. SIMULATION

The three RAMs are pre-configured as shown in Figure 62. In order to express the
concept of the TMR and keep the simulation simple, only the data at memory location
4Cy¢ 1s different for RAM B. The ISR is designed to start at address 30,6 and end at 3Cs.
What the ISR does is to store contents of registers to memory, relying on the voters to en-
sure that the correct contents are written into memory. (In the real circuit, the ISR then
restores all registers from these correct values in memory.) The Opcode F80000¢ is the
RFE instruction used to tell Interrupt where the end of the ISR is. Instructions from ad-

dress 0A ¢ to 106 are used to check data in registers.
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RAM A, B and C
00 | 000000 | 2D
01 | 000000 | 2E
02 | 44014A | 2F
03 | 44024B |80 | 45014A
04 | 44034C | 81 | 45024B
05 | 44044D | 82 | 45034C
06 | 44054E | 83 | 45044D
07 | 44064E | 34 | 45054E
08 | 000000 | 85 | 45064F
09 | 000000 | 36 | 000000 ISR
0A | 000000 | 37 | 000000
OB | 44014A | 38 | 000000
0C | 44024B | 89 | F80000
OD | 44034C | 8A | 000000
OE | 44044D | 8B | 000000
OF | 44054E | 38C | 000000
10 | 44064E | 3D
11 | 000000 | 3E
12 | 000000
13 | 000000
14 | 000000
4A | 0000AA
4B | 0000BB
4c | oooocc RAM B has 00011
4D | 0000DD
4E | 0000EE
: 4F | 0000FF
2C 50
Figure 62. Memory Pre-configurations

Figures 63, 65, and 66 display the full simulation result and some trivial signals

are not shown. There are four clocks in this design. Clock signals clk p, clk i, clk r, and

clk_m are for the KDLXs, Interrupt, Reconciler, and RAMs, respectively. The KDLX

clock runs at one-half the speed of the others. Since the Interrupt does not need signals

from the Reconciler and vice versa, these two components are running at the same clock

speed. The RAMs are looking for the outputs of the Reconciler so the memory clock has

the longest setup and hold time.
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point 6

Simulation of the Full Design without ESSD

point 7

The KDLXs, Interrupt and Reconciler are reset at point 1 and only rest p for

processors is shown. When the program counter, pc_p, is 00026, the first instruction is

fetched. It is known that the instruction at point 2 should cause an error because the data

at address 4Cj, is not consistent between RAMs. Tracing the simulation to point 3, the

function of the Reconciler is shown clearly here. Half of the KDLX clock cycle is fetch-

ing the instruction at the corresponding program counter and the other half cycle is read-

ing data from the memory for the first instruction. So the Reconciler actually reads the

instruction at memory address 0005¢ first and then reads the data at address 004A 6.

This feature makes it possible to consolidate the two different architectures. As discussed

earlier, the instructions should be held until the next rising edge of the KDLX clock.

Thus the Reconciler should not block any data or make a bus high impedance on instr _ra,

instr_rb, and instr_rc.
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Instructions at point 2 are executed one KDLX clock cycle after point 3. The data
needed for these instructions is offered at point 4. The wrong data in RAM B is sent to R3
of the second KDLX in the TMRA at this time. It is hard to see but cid 0 and cid 1 at
point 5 do report errors. The main purpose for this simulation is to show how different
components work together and realize the concept of the TMR. Therefore, the error re-

ports will be analyzed later.

Since the voters are hooked-up to the output buses of the KDLXs, it may be con-
fusing that the TMRA reports an error while it is loading data not storing. If this error is
not seen while loading, then the TMR will not be able to find it until the next time this er-
ror is stored into memory. Figure 64 is only a part of the TMR Assembly in Figure 26

and shows how input data flows.

L

s v

OBUFE18
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BUEE1E D
T

BUFE16 ,
-

Figure 64. Flowing Direction of the Input Data in TMRA

The flowing direction of the input data to the KDLXs is expressed clearly in Fig-
ure 64. Even though the buses on the voters are not bi-directional, the input data can still
be voted by this scheme. Therefore, the TMR can check data either on loading or storing

without waiting until the wrong data is used.

Going back to point 4 in the simulation result. An error is caught by the voter so
the err_i becomes high and triggers the ISR. At point 6, the signal se/ i switches to
00000046 which allows the Interrupt to insert one TRAP instruction and two NOPs to
TMRA. Notice that the state i changes to 2, which is the TrapState of Interrupt. The
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program counter latched is 00086 so the TMR should jump back to this address when the
ISR is done. At point 7, the TRAP instruction is executed by the KDLX and starts the
ISR portion in Figure 62.
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Figure 65. Simulation of the Full Design without £SSD (continued)

The implementation in this ISR is to store all contents of registers to memory. All
data in registers will be voted this time and any inconsistency should vanish. The wrong
data in RAM B ought to be corrected after this implementation. Normally the ISR will
not write to original data. The reason for doing this here is because this test is to prove
the ability to correct an error. Thus the same error should not appear next time when the

same instruction is executed.

The contents of R3 shows up again at point 8 in the ISR. Any error detected

while in the ISR will be ignored since this procedure is correcting an error and voters will
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take care of other errors. The err i flags at point 8 will be ignored again because it is
known that the data in R3 of the second processor is wrong. Signals cid 0 and cid I at
this point report the same error syndrome as the one at point 5. It could be explained eas-
ily since data is the only thing having a problem. If the third Opcode for ISR is different
in one of the processors, signals cid 0 and cid I at point 8 will have a different error
syndrome. It could be seen that Interrupt stays at the WaitState until it sees the RFE in-

struction.

Once the Interrupt detects the RFE instruction sent out from the RAM A, it starts
its BackState at point 10. The instruction buses of the Reconciler (i.e., instr_ra, instr_rb
and instr_rc) are forced to zero at point 9 when the RFE instruction is detected. The RFE
instruction can never be passed to the TMRA or it will be fetched and executed at point

12. If so, the new Jump instruction at point 10 becomes useless.

The Interrupt inserts the new Jump instruction, C80008,¢, one clock after point 9.
Therefore, it takes three clock cycles to have the new program counter used after
F80000,, 1s seen by Interrupt. The operation code from address 3A ;¢ to 3C;¢ in Figure 62
will not be implemented since the Reconciler wants to clean the pipeline before the TMR
goes back to normal operation. So point 11 in the simulation is where the ISR stops. At
this time, both Reconciler and Interrupt are already back to normal states. The TMR

goes back to normal operation at point 12.

Doing exactly the same instruction set again from address 08¢ to 10,6 in Figure
62 proves the error in RAM B has been corrected. No error is reported and the ISR is not
triggered again at point 13 in Figure 66.

A complete ISR should store all contents of registers to memory and reload them
back to the original registers. Inconsistent data between the three processors should van-
ish. The ISR shown in Figure 62 is not complete in order to keep the simulation simple.
Generally speaking, the ISR should not overwrite the original data. A temporary memory
location needs to be specified for storing and reloading purposes in the ISR. The simula-
tion in this design of overwriting the original data just proves the function of the error

correction.

104



flestenchve p | L [ L L [ L Lo LT LW
F LTS I e e e 1 I I B O A
P Ty I ey Y I oy B B
PV 8 s e e e ) e ) I N Iy B B

[testbench/reset_p

Jtestbench/pc_p | J000E foooc [{oooD joooE [JoooF Joo10 [Joo11 foo12 [{oo13 o014 [foo1s Joo1s [Yoo17 foo1s

Jtestbench/addr_p 0000 fooaa jooaB Jooac Yoo4an Yoo4aE YooaF foooo
Jtestbench/cid 1 ] I ¥ I I I I I T 1 I H 1 I 1 X I
Jtestbench/cid_0 [T I I | el (el (el (| il el il e | Sl (el | 1 1 I I
Stestbench/data_p

/testbench/data_ra

Jtesthench/data_rb

/testbench/data_rc

Jtestbench/dout_ma | (440144 1440248 | [44034C 420420 Yoozoan J4spsae Joooes Yeaosar Yodbocc Yoconoo foioooo Yocooco focooee] Jocooce Yoonorr[000000

ftestbench/dout_mb | ]44014A ¥440248 44034C 420440 Jooooan Jaspsae Yooones Yeavsar Yodboec Yocoooo foeooo Yooanco [ooooee] focooco T0000FFJ000000

Jtestbenchfdout_mc |[44014A  [44024B  [[44034C  Jaossp Joooonn [4sosee Jooooes Yesosar Jodooc Yocomoo Yorooo fooaoco focooes! fonoooo foooorFfnoo000

1 1 1 ] | 1 1 1 1
— ] | — —

ftestbenchfinstr_ra | [44014A 1440248 |{44034C  Y44044D0 |[a4054e  J44064r| [focoooo  Fooocoo [Joooooo — Yoooooo

ftestbench/instr_rb [{44014A° (440248 44034C___[44044D__[]44054E___ ]44064F 000000 J000000 000000000000

ftestbench/instr_rc | 1440147 =440245 44034C 440440 44054E [44064F 000000 lGDODDG 000000 IDO‘JDCID
ftestbench/pc_out i

/testbenchferr_i

ftestbench/trap_i

/testhench/read_p |_J_|_|_L _J_\_,_\_m

Jtestbench/write_p

/testbenchfsel i |FFFFFE

festhenchystate i JO_ (1 fo f1 [fo i Jo Ji o fi fo fif (o 1 fo r ffo fi o Ji [Jo ¥r Yo 1 o i fo 1
ftesthench/state_r JO_ (1 fo f1 [fo Jr Jo fo To 2 fo ¥l o > fo J2 [lo f2 Jo fi [Jo ¥r Yo fi o i jo |1

prrrrcrebrroeccc bocvoeecc beccrereoc bevcrcronc beeccree b occeebeorecccc becoroccr becrorocccbecrrooecbeccoreee booerecee broeee
2800 ns Jus 3200 ns 400 ns 3600 ns 3800 ns 4 us 420

point 13

Figure 66. Simulation of the Full Design without ESSD (continued)

C. ERROR ANALYSIS

The analysis of the error in this simulation is quite easy since the data portion is

the only part that needs to be checked. Figure 67 shows the way to check the error.

At point 5 in the simulation, the cid 1 is 006E800000000,¢ and the cid 0 is all
zero. A zoom-in on point 5 is shown in Appendix A, section K. It can be quickly identi-
fied as an error from the second processor. Comparing the inconsistent portion of the
data with cid data shows that they have the same pattern which demenstrates that the er-

ror report in this design is correct.
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Hex Binary

Correct Data 00CC 0000 0000 1100 1100

Wrong Data 0011 0000 0000 0001 0001

Error Report 0000 0000 1101 1101

inconsistent
data(15:0) portion
. W
e ™

Bit 50 44| a8 49 41 a0 | 3¢ ap i1 0 | a5 M 33 2 | 3 0
cid 1 0.0 0 u 0 1 1 1 0 1 i 0 0. 0
cid 0 {1 | 0 0 0 [N ] 1] i i) 1] i) il i) 0

]
cl d_ | 00 6 E 8 00000000
in hex
v

mconsistent ]301‘1[01] the Second Processor

Figure 67. Error Analysis for the Full Design

D. CHAPTER SUMMARY

It is exciting to see that this full design works in simulation. The three KDLX
processors work in parallel and the design functions as desired. Confusion on how Inter-
rupt or Reconciler works should have been cleared up by the material in this chapter.
The program counter is not latched properly in Figure 59, but works perfectly in the full
design. The timing issues of the simulation arise again. Changing the way to latch the
program counter in the Interrupt to make it work in Figure 59 may cause the simulation

of the full design to fail.

The last component for a complete TMR design is the Error Syndrome Storage
Device (ESSD). This is a device used to store error syndromes for future analysis. The

full design with ESSD will be introduced in the next chapter.
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IX. THE FULL DESIGN WITH ESSD

After designing and simulating different components, the TMR design is almost
completed. In the previous chapter, it has been shown that the voters are able to report
and locate an error when it occurs. Errors on different buses will be reported by
cid _1(50:0), cid _0(50:0), err(50:0), and v_err(50:0). The pattern generated for an error

on these buses is called the error syndrome.

A space system like CFTP will leave the earth for a long time. It is desired to
have some kind of device to collect the error syndrome whenever an error occurs. The
error syndrome can be used to analyze the health of the system or help understand the
space environment for a system on orbit. If the same error is generated several times, it
can be assumed that a certain device is defective or deviant. The solution may be to re-
program the FPGA or reset the system. The ESSD is the device designed to collect error
syndromes. In order to be able to download this data after a period of time, the ESSD has
to store the error syndromes to memory.

A. THE FUNCTION OF ESSD

Simulation for the full design without £SSD was introduced in the previous chap-
ter. Therefore, the functions of ESSD are to store the error syndromes and where they are
located in the system. The ESSD is designed pretty much following the concept of build-
ing the Interrupt. It is a state machine coded in VHDL and runs in double speed, that is
in synchronization with the memory clock. It has to run in double speed in order to work
with errors generated in either half of the KDLX clock cycle. Because the ISR will be
triggered when an error occurs, choices for where ESSD is to be implemented are before,

after or sometime within the ISR.

Halting normal operation is the last choice since the ISR is already designed to do
that. It is reasonable not to interrupt the normal operation unless absolutely necessary.
Too many interruptions may decrease the performance of a system or cause the program
to lose track of the instruction sequence. Due to these reasons, the ESSD is implemented

in the ISR instead of triggering another interrupt routine somewhere in normal operation.
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To minimize the impact on ISR, the ESSD is designed to start right before the first
instruction in ISR begins. The two NOPs following the TRAP instruction are a good
starting point for ESSD since the pipeline is cleaned and no useful instruction is execut-
ing. Consolidating all of the concepts above, the state machine for ESSD is constructed

as Figure 68 and its VHDL code is in Appendix C, section D.

reset_i=0

State0_A State0_B LatchState_A LatchState_B

reset_i=1

BackState

CL‘) NopState0_A

StoreState_pc

StoreState_addr Q;>
4
2

NopState0_B

5>
> NopState1_A

(o)

NopState1_B

()

StoreState1_C 1
StoreState1_B > StallState
1

StoreState0_C StoreState0_B
StoreState1_A @ 10 9 StoreState0_A

Figure 68.  State Machine of ESSD

(o)

The first eight states are very similar to the states in /nterrupt. This is because the
ESSD has to wait until two NOPs are inserted. The LatchState A latches the program

counter, the data address, and the 51-bit data on the cid 0 and cid [ buses. The Stall-
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State stalls KDLX in order to start storing the latched error syndromes. The ESSD stores
data to memory as a stack which starts at the bottom and runs to the top. For simplicity
and explanation purpose, we use address 0059, as the starting point and store data from

the least significant bit to the most significant. This function is illustrated in Figure 69.

Memory
00
01
02
4F
50
51
program counter » 52
data address » 53
21 O's+cid_1(50:48) > 54
cid_1(47:24) » 55
cid_1(23:0) > 56
21 O's+cid_0(50:48) > 57
cid_0(47:24) > 58
cid_0(23:0) » 59

Figure 69. Function of ESSD Storing

Each data word in memory is 24-bits wide so a 51-bit data syndrome takes three
clock cycles to store. The most significant three bits of cid 0 and cid I are stored with
21 zeros ahead. A counter is used internal to ESSD to track the memory locations. The
next error syndrome will start at address 51;¢. States from StoreState() A to Store-
State _pc implement the actions described here. During this period, all of the processors
are stalled and the memory is controlled by ESSD. The last state is the BackState which

releases the processors to start the ISR.
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The ESSD runs at twice the speed of the TMRA but states after the NopStatel B
are not doubled as the other state machines do. Because the £SSD and the memory are
both in double speed, one memory access can occur in every ESSD state. Therefore,
states between StoreState() A and BackState do not need to be duplicated. The Interrupt
and Reconciler stop functioning when KDLX is stalled. The schematic symbol of ESSD

is shown in Figure 70.

essd

—clk_s addr_s(15:0)
—{reset_s sel_addr(15:0)
err ess(23:0)
F—— addr_in(15:0) sel_s(23:0)
F——pc_in(15:0) wr_s
—— cid0_in(50:0) sel_wr
[

cid1_in{50:0) state_s(4:0}

U TOLL

stall_s

Figure 70.  Schematic Symbol of ESSD

Input signals at the left side are used for latching data from the buses. Output sig-
nals, sel addr(15:0), sel s(23:0), and sel wr are used to switch muxes in order to insert
data on addr _s(15:0), ess(23:0), and wr_s, respectively. The stall s goes low to stall
KDLX when error syndromes are ready to be stored.

B. THE FULL DESIGN WITH ESSD

1. Schematic

The schematic for the full design with £SSD is shown in Figure 71. Comparing
with Figure 61, the ESSD is added at the bottom right and all incoming or outgoing buses
are intercepted with muxes. The ESSD obviously takes over RAMs once it starts to store
error syndromes. Three muxes at the input side of R4Ms are used to insert the data ad-
dress, data and write signal. The other three muxes on the output buses of RAMs are used

to intercept any unrelated data to Reconciler while storing the error syndromes.

Two big latches called /atch51 are sitting on the cid 0 and cid 1 buses ahead of
the ESSD. This part is coded in VHDL and is necessary for this design. It latches data

when err is high and keeps the latched data until the next error is detected. Therefore, the
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ESSD can capture cid 0 and cid I whenever it wants because this data is available and
stable on the bus. More explanation of how it functions and why it is vital in this design

will be described in the simulation discussion.
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Figure 71.  Schematic of the Full Design with ESSD
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2. Simulation

Fewer signals are monitored here than with the full design in the previous chapter,
since the test bench is almost identical except for a few extra instructions for checking
stored error syndromes in memory. Functions of the TMRA, Interrupt and Reconciler in
the full design without £SSD have been described so this simulation just shows how the
ESSD works. Important signals and all buses on the ESSD are monitored in the simula-
tion shown in Figures 72 and 74. This simulation ignores most identical parts introduced
in the previous chapter. Only the important functions of the ESSD are shown for

explanation.

gestbenctvek p [ L [ L L[ L L L@ L L L]
PSS U N I U 1 O (O I
s [ e A I B B B B
e VC T I e e I I N 6 O
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Jtestbench/dout_me 000000 [44014A_ |)44024B__ §44074C | fw0=in Yomann Jeasse foovose {<woesr Joosocc [oooaoo Jaooonn Jooooos Jenoase Jeooeon J0000FF hesaiaa 000000
Jrestbenchierr ' ‘ ' . ' o M — o —
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ftestbench/sel_s [ {FFFFFF 000000
Jtestbench/state_i [ {0 |5 o 11 o v Yo 11 fo N fo 1 o 1 o 11 G fa 5 ¥ 17 B8 |9 | I )
Jtestbench/state r [0 |1 o 1= Jo (VN N O O | T P (O P2 ) O 0__J2 [fo__J2 %012 Jo__fi__Jo__ 11
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point 1 point 4

Figure 72.  Simulation of the Full Design with ESSD

In Figure 72, five clocks are listed. The Reconciler, Interrupt and ESSD all work

in parallel so the time constraints for c/k ir and clk s are identical. The new clock, clk I,
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for latch51 needs to run at double speed, and it has to be stable before the ESSD is ready.
Because of this, the /atch51 has less setup and hold time comparing with the ESSD.

As before, the error is caught at point 1 and cid 1, cid 0 indicate where the error
is. One needs to know that cid 1 and cid 0 are output data of latch51. Unlike the simu-
lation in previous chapter, data on cid I and cid 0 show up at point 2 and are latched un-
til the next error is reported in normal operation. The ESSD, therefore, is able to store

these two data when state s is 021.

The most important reason for using /atch51 is to make the data stable on the bus.
The zoom in at point 5 in Figure 63 is shown in Figure 73. The data of cid I and cid 0 is
available after the memory clock cycle and becomes unstable before the next rising edge
of the Interrupt or Reconciler clock cycle. Because the ESSD is running exactly the same
clock speed as the Interrupt and Reconciler, both cid I and cid 0 have to be available
until the next rising edge of the Interrupt (or Reconciler) clock in order to be latched cor-
rectly for the ESSD. Due to this reason, the latch51 is designed to keep the data stable

and the ESSD thus can latch it at any state before storing the error syndromes.

Jtestbench/clk_p J
frestbench/clk_i \ |
ftestbench/clk_r | I

/testbench/clk_m ]

Jtestbench/reset_p

ftestbench/pc_p [0007

Jtestbench/addr_p |004C

ftestbenchycid_1

ftestbenchycid_0

LLLLLLL /data_p

ftestbench/data_ra

/testbench/data_rb

Jtestbench/data_rc

Jtestbenchydout_ma

Jtestbench/dout_mb

ftestbench/dout_mc

Jtestbenchyerr_i

Figure 73.  Detail Timing at point 5 in previous simulation

Back to Figure 72, point 3 is the first instruction fetched in the ISR. At the same
time the KDLX is fetching this instruction, the ESSD triggers stall s at point 4 to stall the

processors. In the next clock cycle, the muxes are switched to zeros and 0059, appears

on the address bus to the RAMs.
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Figure 74.  Simulation of the Full Design with ESSD (continued)

Following the algorithm explained in Figure 69, the bus ess at point 5 proves this
function works. Once the ESSD finishes at point 6, it gives all of the buses back and re-

leases the processors. The first instruction of the ISR starts in the next clock cycle.

Extra instructions in the RAMs are for loading error syndromes stored in memory
back to the registers for checking purposes. These instructions start at point 7 and the
output data at point 8 proves that all values are stored correctly.

C. CHAPTER SUMMARY

All components for a complete design have been introduced. The reason for not
discussing the £SSD until this chapter is to simplify the simulation. There were too many
things that needed to be explained in the simulation result if the £SSD is not described
separately. This would make the whole simulation look complicated and may not em-
phasize the importance of the ISR. Introducing the ESSD separately means that the func-

tions of the Reconciler, Interrupt, and ESSD are shown clearly in all simulations.
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Not a conceptual design, this full design was simulated and checked. Design of
these components can be improved and more information is needed for a better perform-
ance of the TMR system. These topics for follow-on research will be discussed in the

next chapter.
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X. CONCLUSIONS AND FOLLOW-ON RESEARCH

This thesis has described the design of a premiere TMR design on an FPGA for
the CFTP. Major components have been defined in previous theses but most of them had
to be redesigned due to more understanding of the KDLX processor. Each component
was simulated to prove its function. Some timing issues were discussed when different
components were connected with each other. The full design has proved the ability to de-
tect and correct an SEU in simulation as well.

A. OVERVIEW

The TMR Assembly consists of three KDLX processors and voters in order to de-
tect and correct errors. A majority voter can only handle one error per time. Since the
TMR Assembly has several voters in it, it is able to report errors on different signals si-
multaneously. For example, cid 1 and cid 0 buses of the TMRA can identify errors on
the program counter and data at the same time. The processor causing errors on the pro-

gram counter may not be the same one that generates errors on data.

In order to coordinate memory access, the Reconciler is built to consolidate the
Harvard and Von Neumann architectures. It runs twice as fast as the KDLX clock cycle
and has instruction memory access first followed by the data memory access second.

This component purely implements read and write access with memory and does not re-
late directly to error detection or correction. The Interrupt provides an ISR to correct any
inconsistency in registers between the three processors. This unit is triggered when an er-
ror is found by the TMRA. If an error is caused somewhere on the bus but not inside reg-
isters, the ISR will still be triggered but no error will be found. An error syndrome re-
cords the program counter, the memory address, and any inconsistent bits on data, ad-
dress, program counter, read, write and program read in cid buses. This information is
latched in ESSD and will be stored to memory during the ISR. Analyzing error syn-

dromes can help a designer to correct or fix the current design.
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B. CONCLUSIONS

A simple flow chart in Figure 75 illustrates the overall procedure to correct an er-
ror in TMR. The role of each component in the full design can be understood clearly.
The Interrupt is generated for error correction purpose only and the ESSD is for storing

error syndromes only.

/ Interrupt \ / Interrupt \

1. Insert TRAP and two NOPs 1. Retrieve ISR

2. Latch program counter / ESSD AN 2. Store and Reload all
3. ISR starts contents of registers

Error occurs ‘\ / _ | 1. Intercept ISR and Stall KDLXs o \ /
2. Start error syndromes
ESSD storage ESSD
1. Latch error syndromes Release KDLXs and all

2. Wait for the end of two buses connected to
NOPs memory

N

Normal

A

TMRA / Interrupt \
1. Program counter loaded 1. See RFE instruction
2. ISR ends n 2. Insert new Jump instruction [

-/

Figure 75. Flowchart of Error Correction for TMR design

A reprogrammable space device such as CFTP has a great potential for the future.
The TMR on an FPGA functions as a SOC which saves space on board and offers the
flexibility of modification. Utilizing the TMR design with some other features makes the
CFTP act as an error-free device. Its powerful feature of reconfigurability widens its us-
age in missions and lets the state-of-the-art technology be applied to many applications.

C. FOLLOW-ON RESEARCH

A premiere functioning TMR design is complete. This circuit was simulated and
proved on software. It is possible to instantiate this design onto a development board to
verify its function. Before doing that, some modifications need to be done. Performance
of each component can be improved as well. Furthermore, using a faster soft-core proc-

essor to speed up the overall performance of the TMR is inevitable.
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1. Modification on Current Design

Most components like Reconciler, Interrupt and ESSD are essentially state ma-
chines coded in VHDL. It is possible to have these three in one big state machine since
they all run in double speed. One needs to have a clear mind on the different functions of
the different components in order to do this. Debugging this kind of big state machine
needs to be carefully done since any modification on one state may affect functions on
other states. On the other hand, there are several different ways to code a component.
Other methodologies sometimes are better than using a state machine depending on

characteristics of these different components.

A voter error is not considered in this thesis due to time constraints. This kind of
error does not need to trigger the ISR. When a voter votes incorrectly, the output is not
trustful. The data can be either discarded or re-voted based on the situation. The ESSD
may need to be revised so as not to save all error syndromes in order to save memory

space.

The memory selected for the simulation is based on the availability of the ISE
software. If possible, a real Von Neumann architecture memory should be built. Modifi-
cations on the TMRA and Reconciler will be necessary at that time. The real environment
on the development board must be considered before these modifications. This avoids
duplicate work and makes it possible to compare the simulation result on software with

the one on hardware.

An SEU can occur anywhere in the TMR design. More issues need to be solved
if this error occurs on the Reconciler, Interrupt or ESSD. Increasing the reliability also
increases the probability of having an SEU. The trade-off between these conditions
needs more discussion.

2. Faster Processors

Several requirements are considered when searching for a faster processor. First,
The new processor has to be faster than the current 16-bit RISC KDLX. Second, it has to
be a soft-core processor. Third, it needs to be compatible with Xilinx Virtex XCV800
HQ240 FPGA selected for the CFTP. Other features such as using cache or Harvard ar-

chitecture can be reconsidered.
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Many soft-core processors nowadays use cache to improve their performance
even though it is possible to have an SEU in it. Detecting and correcting an SEU in a
cache cannot use the same method as with the registers. The contents of the caches need
to be reloaded by some method. Study of the SEE on a Pentium®35 III processor proves
that utilizing cache in different ways can change the testing result dramatically [12].
Therefore, it is possible to take advantage of cache without increasing the probability of

having an error, and consideration of future processors should include ones with cache.

Using a Von Neumann architecture processor would simplify the TMR design.
The Reconciler can be removed and less control in TMRA are needed for the data bus.

Table 21 lists some candidate commercial processors that are currently available.

Commercial Processors

Company | Processor |Architecture Features

Xilinx | MicroBlaze | 32-bit RISC |1+ NO cache
. Harvard bus

. Most have cache
. Von Neumann bus
. Hard core

ARM ARM7TDML | 32-bit RISC

. Programmable cache 0-64KB
. Co-processor interface

. Floating-point pipline

. Hard core

MIPS64 .
MIPS 5SKo(5K) 64-bit RISC

. 32KBcaches
. Superscalar
. Hard core

MIPS MIPS64 20Kc | 64-bit RISC

. MIPS64 based

Sandcraft | SR71010B | 64-bit RISC . L1 32KB cache

Tensilica Xtensa 32-bit RISC |1. Local data and instruction caches

— = DN = W N =N N =W =N =

. Instruction master is a 16-bit wide, la-
Altera Nios 32-bit RISC | tency-aware Avalon bus master
. Configurable cache size

N

1. Processor can be configured with Har-
vard bus architecture (separate instruc-
tion/data buses) or a von Neumann bus

ARC  |ARCtangent-A4| 32-bit RISC | architecture (unified instruction/data
buses)

2. User-configurable instruction and data
cache

Table 21. Commercial Soft-Core Processors

5 Pentium is a registered trademark of Intel Corporation.
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Some processors have configurable cache which gives the user some flexibility.
The advantage and disadvantage between a soft-core and a hard-core processor has been
described in Chapter I so no hard-core processors are considered. Candidates for the

TMR are MicroBlaze, SR71010B, Xtensa, Nios, and ARCtangent-A4.

Commercial processors are always expensive because of the proprietary issues.
Sometimes these processors come with their own development kit which makes imple-
mentation on other software impossible. Part of the design of a commercial processor is
sometimes protected by the company and not accessible for the user. Even though revis-
ing a processor is not always required, studying source code is a good and fast way to un-
derstand the processor itself. On the other hand, information of these commercial proces-

sors is limited since only the data sheet on the Internet can be found most of the time.

Sometimes people share their invention or modification of cores with the public.
These cores may or may not be fully tested and usually the designer is looking for other
people to test it. These cores are called OpenCores. OpenCores are free and can be eas-
ily downloaded from the Internet. The disadvantage of using OpenCores is that they are
hard to use. Some designers do not describe their design in detail and development tools
vary from different designers. People post their questions on the website and hope some-
one will answer it. Therefore, there is no customer support like the commercial proces-

sors. Some Opencores are collected in Table 22.

Some information is not complete due to the lack of description by designers or
other users. These cores do not have many restrictions and can be modified if desired.
Based on the information found, the SPARC and RISC R1000 are very common proces-
sors. The RISC R1000 has been tested and successfully ran a video image program.
Many devices are also compatible with this processor. The RISC R1200 is almost an
identical processor with R1000 except for the cache inside. The Yellow Star which is ac-
tually the MIPS32 R3000 processor is known as a very powerful processor. It has been

tested by many users as well.
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OpenCores

Architecture Name Features
1. AMBA AHB and APB on-chip buses
SPARC V8 LEON V.HDL 2. Data cache is a direct-mapped cache configurable to
32 bit
1-64 kbyte
1. A radiation-tolerant processor developed for space
ERC32 applications
SPARC V7 32 bit 2. Two platforms are supported: SPARC Solaris-2.5.1
(or higher),and x86 linux (libc5)
3. VHDL model runs on Unix systems
RISC OpenRisc R1000 |1. Tested on Xess XSV800 and Flextronics Semicon-
32 bit ductor development boards
OpenRisc R1200 1. Tested on Xess XSV800 and Flextronics Semicon-
RISC . ductor development boards
32 bit
2. cache
1. Capable of executing 32bit instructions based on the
MIPS R3000 microprocessor instruction set and has
Yellow Star . .
been tested running large blocks of compiled C code.
RISC (MIPS32 R3000) . o
. 2. Fully functional and compatible interrupt system. Can
32 bit .
handle all exceptions cleanly and correctly.
3. On-chip cache control and Memory Management Unit
1. The "risc16f84 clk2x.v" core has been coded com-
RISC Risc 16184 pletely, synthesized and tested for correct operation
(and debugged!) inside a Xilinx XC2S200 FPGA
1. Support interrupts and all MIPS I(TM) user mode in-
structions except unaligned load and store operations
(which are patented) and exceptions which can be eas-
ily avoided.
RISC Plasma 2. Tested on an Altera FPGA running at 16.5 MHz (syn-
thesized for 29.8 MHz)
3. Currently running on an Altera EP20K200EFC484-
2X FPGA and a Xilinx FPGA
Table 22.  OpenCores

These OpenCores are tested and proved with certain FPGAs. In order to use these

processors in the TMR design, more study and research on source codes are required.

Finally, they will need to be tested and simulated on the ISE software before any design
work related to the TMR.
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APPENDIX A: SCHEMATICS

Appendix A contains all schematics, test benches and simulation results of the
components in this thesis. Simple schematic symbols are introduced as figures and are
not included here. Features and settings of each component and test bench are briefed as
well. The long test bench is chopped into pieces and only the important parts are shown.

Sometimes a different expression is used in order to explain how a component will be

tested.

The simulation result is always shown completely. Important parts that need to be
explained are duplicated or modified in contents. All values used in the test bench and
the simulation result are hexadecimal and RO is always zero.

A. 24-BIT MEMORY

1. Schematic

This memory is a RAM. It is triggered at the rising clock edge. Both write en-

able (i.e., WE) and memory enable (i.e., EN) pins are active low. Default value of this

memory is zero.

addr(7:0 ADDR(7:0) DOUT(23:0) data_out(23:0

data_in(23:0 DIN(23:0)
we, WE
enable_m EN
[clk> CLK

2. Test Bench

This test bench was originally in a single row. It is cut into two rows in order to
fit the paper size. The vertical line at time 2100 ns is the stop point of the simulation.

Clock high time and low time is 50 ns. Input setup time and output valid delay is 10 ns.

lime (ns) [ ] 1imy | EET | | ETET) B [ iaibik [ 700 | | [T [T [1200) 1 31 IETE T1s00 Tiea
clk MUFAT Y F7 % 3 T % Fs N\ Fe W FT % FR % Fo o\ floy T F\ foN o Fnh fe\ Ao
addr| 7:0] [ [ Tl Ko o Wos Wd WS e a7 Hox h AT LA K oz LTE Wi Vis
dute m[23:0] T 000000 X 000047 KOM004C K 000031 K 000036 K 000035 X 000060 £ 000063 K 000064 K O0HGE ¥ 100074
enable_m (- Wi

© =1 W0 7i
data_ow|23:0] <3

Time (is) [eoo— Ti7oo Tisoo  Jrooo Jzoo0 [2io0 2200 (2300 (2400 [2500 (200 [2700 (2800 [2e00 [3000 [3io0 [3200
eIk T s e fao 2 F23 24025 e 27 ST S A L A
addr| 7:0] — 05 Wi 07 V1w W
data_in|23:0] =
enuble m —

Ve —
data_out] 23:0] <3
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3. Simulation Result

S | | s | Iy I [ B O

Jtestbenchyaddr |00 o1 foz 03 Jo4 05 fos 07 Joa  Joo Joo 01 foz 03 Jo4 05 Jos 07 Jog  Joo

Jtestbench/data_in 000000 Yoo0047 Joooo4c foooos1 Jooooss Joooose Jooooso fooooss Joooosa Joooosk Joooo74

[testbench/enable_m

Jtestbench/we I

testbenchydata_out |000000 Joo0047|foooo4c Yoooos1|{oooose Yoooosa[¥ooooso §ooooss|{oonasa Yoooosr ¥onoo74 foooo47(foono4c foooos1|fooooss Joooose(fooooso Jooooss|{oooosa Joooosr ¥ooo074

B. KDLX WITHOUT MEMORY

1. Schematic
dix
clk > clock_in prog_rd
rd 4‘ rd p>
@% resetn
T p>
[stip> stalln addr_int(15:0)
po(15:0) [ pc_p(15:0p>

instr(23:0)

data(15:0) data_p(15:0

2. Test Bench

The data bus is high impedance. Two values are offered at clock 5 and 6 for
KDLX to load into registers. Clock high time and low time is 50 ns. Input setup time
and output valid delay is 10 ns.

Time (ns) [0 | 100 1200 |30 [ [500 |60 [ 700 | ) | [ 1006 |1
elk g 2 3 4 5 ] 7 8 o 11 11 }
ins[23:0] > QOO 40305 WAd0507 QUL [T [T W 450507 W 450305 W4 13408 15601 [T [I]
rsl_p 0 |

st p — o i1
addr| 15:0] <
pe_pliso] <4
pro_rd <
rd p <
wr_p <
data pl15 0] <7 R AL T A A R | | L(TTH oo e e

Time ins) [0 [1200 [1300 T1400 Tison Tia [1700 |IE] | [ [20HH0 [2100 [
<lk o fir F AN fra FAEERY LT f17 Y Fis Aoy Fa 200 22 F2
ns[23:0]) = 00000 GUOD0 HA5030M W A5060C HO0000 OO0 OO0 | M

sl {—

sl p =

addr]15:0] <3
pe_p[l50] <3

pro_rd <
rd p <
Wr p <1

data_p[15,0] <= —
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3. Simulation Result

peswencvak ([ 1T L L L e

Jtestbenchfins [000000 440305 440507 {000000 450507 J450305 413408 415601 [000000 450404 Ja5060C J000000

Jtestbench/rst_p
Jtestbench/stl_p
Jtestbench/addr (0000 Jooos 0007 0000 jooo7 lCIOOE CIOlC:HGDlB 0000 Joooa 00oC 0000

Jtestbench/pc_p [0000___tooo1 [foooz” Jooos [Jooos  Jooos  [fooos Joooz [fooos Jooos  [foooa” jJoooe  [joooc joooo  [fooce Jooor  [fooio” Jooin [Jooiz

pesenchyprord | L L0 L0 L L L e e e
Jtestbenchird_p L L
ftestbenchfwr_p \_I_LJ LJ_l_l

Jtestbench/data_p 0014__Jo015 {oors} {ooe] {0016}

T
C. KDLX WITH MEMORIES

1. Schematic

The instruction memory at the left side is a ROM. The data memory at the right
side is a RAM. Data memory is pre-configured with 0003;5. Both memories are trig-

gered at the rising clock edge.
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2. Test Bench of Instruction Set

For the processor, clock high time and low time is 50 ns; input setup time and out-

put valid delay is 10 ns. For memories, all timing settings are half of the processor clock.

The bi-

directional bus is high impedance.

Nothing special is needed in the test bench thus only the first and last parts are

shown here. The KDLX is reset and memories are enabled at time 200 ns. Since the in-

struction is configurable, the test benches for all instructions sets are the same.
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ut_mem| 150

[ 100 [ 200
i

il 30 [40 |50 | 10 [11
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— | i
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[8900 o [9100 [92 [93 [54 [9500 [96 [9800 [oc
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||\;\III:' I|‘\.| 0] E}

::‘i:hl..-.l\:‘ﬁu;‘.:\ I:I:|_>.lb T N S A AT S AT T A AT A T AT A AT S AT ST ST I AT ST ST S AT S AT S AT AT I

Iu ::1 sm| 13:0] ';

3. Tables and Simulation Results of Instruction Sets
a. Implementation Table of Instruction Set 1
Instruction (operation symbol) Opcode Expected Value

LW R1<-Mem(R0+03) 440103
SW R1->Mem(R0+08) 450108 0003
LW R2<~Mem(R0+04) 440204
SW R2—->Mem(R0+09) 450209 0003
ADD R1+R2—R3 011320
SW R3—>Mem(R0+0D) 45030D 0006
ADDI  Rl+ext(F9)—»>R4 4114F9
SW R4—>Mem(RO+0E) 45040E FFFC
ADDUI RI+(0A) »R5 21150A
SW R5—>Mem(R0O+0F) 45050F 000D
AND R1eR3—>R6 091630
SW R6—>Mem(R0+10) 450610 0002
ANDI  R4e(FD)—R7 2947FD
SW R7->Mem(R0O+11) 450711 00FC
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Instruction (operation symbol) Opcode Expected Value

LHI R8«FF||(0)® 0808FF

SW R8—>Mem(R0O+12) 450812 FF00
OR R1+R3—-R9 0A1930

SW R9—>Mem(RO+13) 450913 0007
ORI R1+(F0)—>R10 2A1AF0

SW R10—>Mem(R0+14) 450A14 00F3
SEQ R1=R2—->R11=1 181B20

SW R11—->Mem(R0+15) 450B15 0001
SEQ R1#R3—>R12=0 181C30

SW R12—>Mem(R0+16) 450C16 0000
SEQI  R1=(0003)—R13=1 581D03

SW R13—>Mem(R0+17) 450D17 0001
SEQI  R1%(0004)—R14=0 581E04

SW R14—>Mem(R0+18) 450E18 0000
SLL R4<R¥F=0003_yp 15 114F20

SW R15—>Mem(R0+19) 450F19 FFEO
SLLI ~ R4<®%_4R3 514305

SW R3—Mem(RO+1A) 45031A FF80
SRA R47RIF0003)_yp 5 134510

SW R5—Mem(RO+1B) 45051B FFFF
SRLI R4 _5Re 524603

SW R6—>Mem(R0+1C) 45061C 1FFF
SUBI  R8-ext(7B)—R7 43877B

SW R7—Mem(R0O+1D) 45071D FE85
XOR RI®R10—R11 0B9BAO

SW R11—->Mem(R0O+1E) 450B1E 00F4
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ftestbench/clk_p
/ftestbench/clk_ram_rom
ftestbenchfen_rom

ftestbench/en_ram

b.

Simulation Result of Instruction Set 1

[testbench/reset_p
Jtestbench/stall_p
Vinstr_pass | 000000 (440103 J440204 foooooo ¥as0108 450209 Yoooooo Jo11320 Ja114Fs f21150A Joooooo Y091630 [450300 §45040E [45050F Jeme
Jtestbenchfout_mem |0000 0003
frestenchprog_rd o | [ | L L L L e e
ftestbench/read_p LA LT
Jtestbenchfwrite_p LJ—l_l [
Jtestbench/data_p {00z 0003 {0003 0003 oot |
B << I O Ty O e O s O | O O Y O O Y Y I 1 O B O
festwenchyak_am_om [ LT LT L LML LML Lr L e e yr e e e e e e e e e e e e
hfen_rom
ftestbench/en_ram
Jtestbenchyreset_p
ftestbenchystall_p
hfinstr_pass |<= [2947FD [0B08FF 1041930 J2A1AFO 1450711 450812 [450913 [450A14 [181B20 181C30 1581003 J581F04 [450B15 J450C16 §450D17 J450E18 [114F20
hyout_mem [[ooos JoooaJrerc]; Yonaz ooz 0003 parc oo Treon Jaoo{foca7 fonoa feors Y0003 7Y () ()
frestbenctyprog_rd_p || | [ LI L L e e e
/testbench/read_p
feestbenchywrte p || L[ [ | Iy I I [T R
ftestbenchydata_p | o/ j—r{oon:} ﬁmce—@ {01 —{ooao p—ee |
PSS VUS| N I S ¥ O |y O O |y Y s Y Oy IO
festbenchyetk_ram_rom [T 1L UL L LIy rygre e ey ey L e ey ey
h/en_rom
ftestbench/en_ram
ftestbench/resst_p
ftestbenchystall_p
hyinstr_pass === (134510 (524603 J450F19 |45031A §450518 {45061C [43877B JUBSBAQ J0O0D0O 450710 {450B1E_{000000 Taso101 Jasoz01
Jftestbenchyout_mem [[oo0: [oo0s ooo {0003 rreaooosJrren Joooalfreer foaos [aerr Jo003 rens foons foora 0003
festbenchprog_rap | | [ LI L LI L e ey
Jtestbench/read_p
frestenchywrite p || || A [ [ |y
pyeota_p |—{puoc} et e | freee}—faors
PSS VUS| N I S ¥ Oy |y Y |y Y s Y Oy IO O
fresbenchyetk_ram_rom [T 1L T LUy rygre e ey ey L e ey ey
h/en_rom
ftesthench/en_ram
ftestbench/resst_p
ftestbenchystall_p
hfinstr_pass [== (450401 |450501 J450601 450701 §450801 1450901 [450801 [450BO1 [450C01 [450D01 [450E01 {450F01 000000 fs40100 fa4020E [
Jtestbench/out mem (0003 | [Fra0  {FFFC_ LFFFF  KiFFF JFESS  [JFFO0 0007 | DDFE_IDDF‘Iﬁ_ o000 Jeeojooos |
festbenchypog_rap | | [ LI L LI L L e ey
ftestbench/read_p
fespenchywrie p | L[ L LT L L L L L L L L
h/data_p S :[} Frrc E 1 FEds FF“"—l MFJ {oora b :r E Joonn FrED
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P s U N Iy S |y sy Sy ) | Yy Yy Sy BN
ftesthench/cik_ram_rom ureruryrurureryreryrgrerororyg ey y oy Ly Ly

hien_rom

ftestbench/en_ram
Jtestbenchfreset_p
ftestbenchystall_p
hfinstr_pass |<=r 440410 [440511 |440612 [440713 [440814 440915 440A16 [440B17 [440C18 [440D19 J440E1A 440F1B I«onc_!mzm_lmzmjﬂunnfnn
ftestbenchyout_mem [0003J0006  JFFFC  j0DOD {0002 {OOFC  JFFOD  JoOD7  JODF3  [00D1  JODDD  §0O0DOL  j0000  JFFED  JFFB0  JFFFF  |iFFF  |FESS  Joora |
festenchyprog_ra_p | | [ L | L L L e e e e
festbenchyread p | | [ L LT L0 [ ¢ L Ly
Jtestbench/write_p
I e e oorcj—{rros 007 }mer{5001 000 Joe{ 001 }oe{o000 pef e b Jefrrre e e e

o i

fresencvekp | | [ LI L L L LT T T
festbenchyetk_ram_rom [ 1L L L LML LY L L ML TR
ftestbench/en_rom
ftestbench/en_ram
Jtestbenchfreset_p
ftestbenchystall_p

{testbench/instr_pass 000000
Jestbenchyout_mem |00F4[0003
ftestbenchyprog_rd_p | | [ L L L L T
Jtestbenchyread_p ||
Jftestbench/write_p
h/data_p

T
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c. Tables of Registers and Memories in Simulation 1

Instruction Mem Register Data Mem
00 2D 45071D 00 00
01 440103 2E 450B1E 01 0003 01
02 440204 2F 000000 02 0003 02
03 000000 30 000000 03 0006 FF80 03
04 000000 31 000000 04 FFFC 04
05 450108 32 450101 05 000D FFFF 05
06 450209 33 450201 06 0002 1FFF 06
07 000000 34 450301 07 00FC FE85 07
08 011320 35 450401 08 FFOO0 08 0003
09 4114F9 36 450501 09 0007 09 0003
0A 21150A 37 450601 10 00F3 0A
0B 000000 38 450701 11 0001 00F4 0B
oC 091630 39 450801 12 0000 oC
oD 45030D 3A 450901 13 0001 0D 0006
OE 45040E 3B 450A01 14 0000 OE FFFC
OF 45050F 3C 450B01 15 FFEO OF 000D
10 450610 3D 450C01 10 0002
11 2947FD 3E 450D01 11 00FC
12 0808FF 3F 450E01 12 FFO0O
13 0A1930 40 450F01 13 0007
14 2A1AF0 41 000000 14 00F3
15 450711 42 000000 15 0001
16 450812 43 000000 16 0000
17 450913 44 44010D 17 0001
18 450A14 45 44020E 18 0000
19 181B20 46 44030F 19 FFEO
1A 181C30 47 440410 1A FF80
1B 581D03 48 440511 1B FFFF
1C 581E04 49 440612 1C 1FFFF
1D 450B15 4A 440713 1D FE85
1E 450C16 4B 440814 1E 00F4
1F 450D17 4C 440915 1F
20 450E18 4D 440A16 20
21 114F20 4E 440B17 21
22 514305 4F 440C18 22
23 134510 50 440D19 23
24 524603 51 440E1A 24
25 450F19 52 440F1B 25
26 45031A 53 44011C 26
27 45051B 54 44021D 27
28 45061C 55 44031E 28
29 43877B 56 000000 29
2A 0B9BAO 57 000000 2A
2B 000000 58 000000
2C 000000 59 000000
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d. Implementation Table of Instruction Set 2

Instruction (pseudo code) Opcode Expected Value

SGE R1>R3—R13=1 191D30

SW R13—>Mem(R0O+1F) 450D1F 0001
SGE R15>R14—R9=0 19F9E0

SW R9—>Mem(R0+20) 450920 0000
SGEI R15>ext(E8)—>R10=0 S9FAES

SW R10—>Mem(R0O+21) 450A21 0000
SGEI R15>ext(E0) ->R11=1 S59FBEO

SW R11->Mem(R0+22) 450B22 0001
SGT R4>R15->R6=1 1A46F0

SW R6—>Mem(R0+23) 450623 0001
SGT R15>R4—R7=0 1AF740

SW R7—>Mem(R0+24) 450724 0000
SGTI R15>ext(FF)—>R8=0 SAFSFF

SW R8—>Mem(R0O+25) 450825 0000
SGTI R15>ext(87)—>R9=1 5AF987

SW R9—>Mem(R0+26) 450926 0001
SLE R1=R2—R10=1 1B1A20

SW R10—>Mem(R0+27) 450A27 0001
SLE RI1<R13—>R11=0 1B1BDO

SW R11->Mem(R0+28) 450B28 0000
SLEI R1<ext(03)—>R12=1 5B1CO03

SW R12—>Mem(R0+29) 450C29 0001
SLEI R1<ext(02)—»>R13=0 5B1D02

SW R13—>Mem(R0+2A) 450D2A 0000
SLT R15<R1->R6=1 1CF610

SW R6—>Mem(R0+01) 450601 0001
SLT R1<R15—>R7=0 1C16F0

SW R7—>Mem(R0+02) 450702 0000
SLTI R1<ext(0D)—>R8=1 5C180D

SW R8—>Mem(R0+03) 450803 0001
SLTI R1<ext(01)—>R9=0 5C1901

SW R9—>Mem(R0+04) 450904 0000
SNE R1#R2—R10=0 1D1A20

SW R10—->Mem(R0+05) 450A05 0000
SNE R1#R15>R11=1 1D1BFO0

SW R11->Mem(R0+06) 450B06 0001
SNEI R1#ext(03)—>R12=1 581C03

SW R12—->Mem(R0+07) 450C07 0001
SNEI R15#ext(E1)>R13=0 58FDE1

SW R13—>Mem(R0+08) 450D08 0000
SRAI  R3”%_Re 533606
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Instruction (pseudo code)

Opcode

Expected Value

SW
SRL
SW
XORI
SW
SUBUI
SW
SUB
SW

R6—->Mem(R0+09)
R3R20003)_ p~
R7—>Mem(R0+0A)
R15®&(8A)—>RS8
R8—>Mem(R0+0B)
R3—(80)—>R9
R9—>Mem(R0+0C)
R1-R3—R14
R14—>Mem(R0+0D)

450609
123720
45070A
2BF88A
45080B
233980
45090C
031E30
450E0D

FFFE

1FFO

FF6A

FF00

0083

e Simulation Result of Instruction Set 2

ftestbench/clk_p N I | By
frestbenchyelk_ram_rom [ | [L UL LI LT LOL L LD L L

Jtestbench/en_rom

[testbench/en_ram

ftestbench/reset_p

Jtestbench/stall_p

[testbench/instr_pass 000000

{410103 410203 f0803FF J0804FF {0805FF J080

61F 1410380 J410

4FC_J4105FF 216

6FF |0807FE J0B0SFF J080FFF J210AF3 217785 Jre=e

ftestbench/out_mem |0000 0003

Jtestbench/prog_rd_p [

| Iy

I

[ Sy 1

ftestbenchfread_p

[testbench/write_p

/testbench/data_p

feswencyakp |1 [ LT L L L L e e
feestenchyetk ram rom [ 1L LML LMLy ey Ly ey ey

Jftestbench/en_rom

Jtestbench/en_ram

Jtestbench/reset_p

ftestbenchystall_p

Jtestbench/instr_pass |- 410607 410001 §410E00 §410C00 J410FEQ_J000

1000

fas0101 450201 [450:

301 1450401 1450501 1450601 1450701 450801 J450901 |450A01

Jtestbench/out_mem |0003

\FFB0 BFFFC JFFFF |

IFFF__JFEBS |

festercvprogrdp | [ L L L L L e e e

Jtestbench/read_p

Jtestbenchfwrite_p

ftestbenchydata_p

fresthenchyke p || | [ || |y | N
ftesthench/clk_ram_rom My ey

Jtestbench/en_rom

Jtestbench/en_ram

[testbench/resst_p

Jtestbenchystall_p

6F0_J1AF740

[testbenchfinstr_pass [~ [450C01 [450001 [450E01 f450F01 000000
Jtestbenchfout_mem [[FFO0__ o007 [JOOF3 foOF4 {0000 o001l R0000

[191030 [19F9E0” [S9FAES |SOFBED §450D1F [450920 (450A21 J450822 [1A4
T

Jtestbenchyread_p

Jrenjooo3 JFrE0 Yooo3 JFFE Yoo fooon [ Joous Joowo [mes

/testbench/prog_rd_p I B [ |y Iy |y U s s Y O
frestpencywrite p | L[ L L L L L I
hor Fre0 {001 {0000 p—dcen |

Jtestbench/data_p
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Pl .7 | )y I | S O
ftestbenchycli_ram_rom || | [ ][] [] | ruyuryurooryuruyy oy yrererery

hjen_rom

Jtestbench/en_ram

[ftestbench/reset_p
/testbench/stall_p
hinstr_pass |~ 5AF987_[45D?23_!4SD724 {450825 {450926 }1B1A20 [181BDO [SB1C03 [SB1D0Z [450A27 §450828 {450C29 {450D24 §1CF610 §1C17F0 |5C180D |5C1901
hiout_mem [[cool [FFE0 0003 {FFED fooosfooon || Jooos]foanal) IFFE0 Jooo3~ fFFE0 j0003 Yooor § foooz¥ooon | JFFEQ Jomoz
festbenchyprog_rd p | | [ L L L\ L oL e e e ey
Jestbenchy/read_p
ftestbenchywrite_p || E U | I B L g ]
hydata_p } E Jooo1 b D Joom 0001 {0000 +

S

feswendvak o [ | [ LT L L L L L L L e e L
festienctyek_ram_rom [ L L LML L L L Ly ey Ly L L L Ly

hjen_rom

Jtestbench/en_ram

ftestbench/reset_p
/testbench/stall_p
hfinstr_pass [== |450702 ]|450803 1450904 J1D1A20 |1D1BFO |581C03 |S8FDE1 450405 |450B06 450007 450008 1533606 1123720 |2BFBEA [233980 |031E30 450609
hfout_mem [0003FFE0_ 0003 jrreo fooat | Yooas fooot || Joooz™ Joooi Tooo3 Joooo Yooz fooa: | fooos
festbenchyprog_rd p | | [ L L L L oL e e e ey
ftestbenchyread_p
ftestbenchywrite_p L LI L1y
hdata_p S focna 0001 Joo00 - | oy | | Jooo1

ftestbenchyclk_p Sy | s Y s ¥ s Yy | Sy O
ftesthenchyck_ram_rom Mmoryyroyyrrrryrorere

hjen_rom

Jtestbench/en_ram

ftestbench/reset_p
ftestbench/stall_p
hfinstr_pass [= (450808 [45090C J450E0D 000000
Jftestbenchfout_mem |0003 FrrE §0003 {17F0 Jooos]{Frea fooaz freoo | Joooz
presteenctyrog_re_p |1 [ 1L LI L]
ftestbench/read_p
reswenerunte p | L 1L L L]

hfdata_p 1FFD FreA FFOD |
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f Tables of Registers and Memories in Simulation 2

Instruction Mem Register

00 30 450A21 00

01 410103 31 450B22 01 0003 0003
02 410203 32 1A46F0 02 0003 0003
03 0803FF 33 1AF740 03 FF80 FF80
04 0804FF 34 5AF8FF 04 FFFC FFFC
05 0805FF 35 5AF987 05 FFFF FFFF
06 08061F 36 450623 06 1FFF FFFE
07 410380 37 450724 07 FE85 1FFO
08 4104FC 38 450825 08 FFOO FFBA
09 4105FF 39 450926 09 0007 FFO0O
0A 2166FF 3A 1B1A20 10 00F3 0000
0B 0807FE 3B 1B1BDO 11 00F4 0001
0oC 0808FF 3C 5B1C03 12 0000 0001
oD 080FFF 3D 5B1D02 13 0001 0000
OE 210AF3 3E 450A27 14 0000 0083
OF 217785 3F 450B28 15 FFEO FFEO
10 210BF4 40 450C29

11 410907 41 450D2A

12 410D01 42 1CF610

13 410E00 43 1C17F0

14 410C00 44 5C180D

15 410FEO 45 5C1901

16 000000 46 450601

17 000000 47 450702

18 450100 48 450803

19 450200 49 450904

1A 450300 4A 1D1A20

1B 450400 4B 1D1BFO

1C 450500 4C 581C03

1D 450600 4D 58FDE1

1E 450700 4E 450A05

1F 450800 4F 450B06

20 450900 50 450C07

21 450A00 51 450D08

22 450B00 52 533603

23 450C00 53 123720

24 450D00 54 2BF88A

25 450E00 55 233980

26 450F00 56 031E30

27 000000 57 450609

28 000000 58 45070A

29 000000 59 45080B

2A 191D30 5A 45090C

2B 19F9EO 5B 450E0D

2C 59FAES8 5C 000000

2D 59FBEO 5D 000000

2E 450D1F 5E 000000

2F 450920 5F 000000
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Data Mem
00
01 0001
02 0000
03 0001
04 0000
05 0000
06 0001
07 0001
08 0000
09 FFFE
0A 1FFO
0B FF6A
oC FFOO
oD 0083
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F 0001
20 0000
21 0000
22 0001
23 0001
24 0000
25 0000
26 0001
27 0001
28 0000
29 0001
2A 0000




g Implementation Table of Instruction Set 3

Instruction (pseudo code) Opcode Expected Value

LW R1<~Mem(R0+03) 410103
LW R2<Mem(R0+04) 410204
LW R3«<-Mem(R0+00) 410300
LW R4<Mem(R0+06) 410406
BNEZ  R1#0—Prog_Addr«—(05)+1+ext(04) C01004

Note: PC=05 and (05)+1+ext(04)=0A
BEQZ  R3=0—>Prog Addr<«(0A)+1+ext(04)  C13004

Note: PC=0A and (0A)+1+ext(04)=0F
ADDI  RO+ext(25)—R5 410525
J (0020)—>Prog_Addr C80020
JAL (0014)—>Prog_Addr ; (23)—>R15 E80014

Note:(23) is return address
ADDI  RO+ext(8A)—R6 41068A
ADDI  RO+ext(40)—>R7 410740
ADD R1+R2—R8 011820
ADD R1+R4—R9 011940
SW R15->Mem(R0+01) 450F01 0023
JALR  R5—Prog_Addr; (ID)—>RI15 685000

Noter:(1D) is return address
J (0030)—>Prog_Addr C80030
SW R5—>Mem(R0+02) 450502 0025
SW R6—>Mem(R0+03) 450603 FF8A
SW R7—>Mem(R0+04) 450704 0040
SW R8—>Mem(R0O+05) 450805 0007
SW R9—>Mem(R0+06) 450906 0009
SW R15->Mem(R0+07) 450F07 001D
JR R7—Prog Addr 487000
SW R2—>Mem(R0+08) 450208 0004
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Jtestbench/clk_p
ftestbench/clk_ram_rom
Jtestbench/en_rom
Jtestbench/en_ram
[ftestbench/reset_p
[testbenchystall_p
Jtestbench/instr_pass
ftestbench/out_mem
ftestbench/prog_rd_p
Jftestbench/read_p
ftestbench/write_p

h.

Simulation Result of Instruction Set 3

000000

1410103 {410204 1410300 {410406 |C01004 [000000 Tc13

004 410525 000000 JC80020 4000000 YEs0014 Ja1068A [

0000 0003

A | (N By B

IR I B N B B

Yy |y I [ I N B

hydata_p

Jtestbench/clk_p
ftestbench/clk_ram_rom
Jtestbench/en_rom
Jtestbenchjen_ram
frestbench/reset_p
ftestbenchystall_p
hfinstr_pass

«we (011820 011940 {450F01 {0DDDD0

685000 Joooooo

Tca0030 J000000

Jftesthench/out_mem
/testbench/prog_rd_p
Jftestbench/read_p
[testbench/write_p

1450502 {450603 {450704 450805 J450906 |—

0003

00230003

JoozsJpoos]Fraa ooz

Yy I | Oy

IR T R B N B B

Yy |y I [y I I B

Ly

hydata_p

Jftestbench/clk_p
Jtesthench/clk_ram_rom

hien_rom

Jftestbench/en_ram
ftesthenchjreset_p
ftestbench/stall_p
[ftestbench/instr_pass

o (487000000000

a20 Joon3 oo

h/out_mem
ftestbench/prog_rd_p
ftestbench/read_p
ftestbenchjwrite_p

Yooz foo10f000:

¥450208 {000000
3

Jooe]oo03

[ S R

|

| [N I | By N B

i

h/data_p

U
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15

Tables of Registers and Memories in Simulation 3

Instruction Mem

00
01 410103
N 02 410204
L 03 410300
L 04 410406
:---E 05 C01004
: %oe 000000
: 07 000000
.
P
}'—'—E 0A C13004
E O 0B 410525
H ocC 000000
Poo
.
.
}‘-'—E 0F C80020
: N 10 000000
: 11 000000
g 12
: 13
: N 14 011820
: O 15 011940
: 16 450F01
: L7 000000
: T 000000
E L 19 000000
:L 1A 685000
: L8 000000
: e 000000
i 1D
|
.
t4-> 20 E80014
St 21 41068A
L 22 410740
23
24
:--—-E 25 C80030
; N 26 000000
H 27 000000
§ 28
e
.
eex 30 450502
L. 31 450603
L 32 450704
L 33 450805
L 34 450906
L 35 450F07
;---E 36 487000
i L 37 000000
PO
: 38 000000
§ 39 .
. H
=== 40 450208
L 41 000000
L 42 000000
L 43 000000

Register

Data Mem

00

00

01

0003

01 0023

02

0004

02 0025

03

0000

03 FF8A

04

0006

04 0040

05

0025

05 0007

06

FF8A

06 0009

07

0040

07 001D

08

0007

08 0004

09

0009

09

10

0A

11

0B

12

0cC

13

0D

14

OE

15

OF

3—>R15
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10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

20

21

22

23

24

25

26

27

28

29

2A




J- Implementation Table of Instruction Set 4

Instruction (operation symbol) Opcode Expected Value

ADDI  RO+ext(04)—R1 410104

ADDI  RO+ext(07)—>R2 410207

TRAP  (0020)—>Prog Addr ; (06)—>IAR 280020

Note: (06) is return address

ADDI  RO+ext(09)—R3 410309

ADDI  RO+ext(15)—R4 410415

ADDI  RO+ext(0A)—R7 41070A

ADDI  RO+ext(11)>RS8 410811

ADDI  RO+ext(C2)—>R10 410AC2

RFE (06)—>Prog_Addr F80000

Note: (06) is IAR

J (0011)—>Prog_Addr C80011

SW R1->Mem(R0+01) 450101 0004
SW R2—>Mem(R0+02) 450202 0007
SW R3—>Mem(R0+03) 450303 0009
SW R4—>Mem(R0+04) 450404 0015
SW R7—>Mem(R0+07) 450707 000A
SW R8—>Mem(R0+08) 450808 0011
SW R10—>Mem(R0+0A) 450A0A FFC2
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k.

Simulation Result of Instruction Set 4

P 2o Y O Yy I | S O Y Oy O O O | Oy O O
resenchveti ram_rom |11 LML L ey
Jtestbench/en_rom
Jtestbench/en_ram
Jtestbench/reset_p
/testbench/stall_p
Jtestbench/instr_pass | 000000 1410104 410207 }280020 [410309 [410415 410704 [410811 |410AC2 000000 YF80000_f000000 Jcs0011
Jtestbenchfout_mem [0000 0003
festbenchyprog_rd p | | [ L L\ L oL e e ey ey
ftestbench/read_p
[testbench/write_p
hydata_p
B =TT N O I I | Y O | O O O ) O
frestbenchyetk_ram_rom [ L L L LML L LMLy e e L e e L e ey
h/en_rom
Jtesthench/en_ram
ftestbench/resst_p
ftestbench/stall_p
Jtesthench/instr_pass | 000000 1350101 1450202 {450303 {450404 1450707 |450808 |450A0A [00DD00 Ja10708 -
Jtesthench/out_mem (0003 Youo+ Jouoz)oaos] [oona [oona [avoalfaor Joeoa frrcz 0003
festoenenyprograp | | [ LI L L L Ly Lo e ey
Jtestbench/read_p
ftestbenchywrite_p N |y ¥ Y By I |
h/data_p D—@r oot oot —{Fez
B S | Y ¥ e O e Y | | O I O
estbenchyek_am_om [ L[ L L LI LML LML L e r e e e e o e e e e i e e

h/en_rom

Jtestbench/en_ram

ftestbenchfreset_p
ftestbenchystall_p
hinstr_pass [w 41mc21|m|)]cm 1F80000_{000000 Jcaoo11 Joooooo 450101 {450202 [450303 J450404 |450707 [450808 [450A0A
Jtestbenchfout_mem (0003 [FFC2 0003 Jooo4™ Jooo3 10004 {0007 Jooog Joois e
festbenchvprog_rap | L [ LI L L L L L e e ey
ftestbench/read_p
ftestbenchywrite_p A | Iy [ I [y B
tydata_p {oon2 ooos e
fesenchyat p [ 1 [ L | L L L L L e e ey e L
festbenchycti_ram_rom [ 1 ML ML LML LML L L Ly ey Ly L e ey
h/en_rom
Jtestbench/en_ram
ftestbench/reset_p
ftestbenchystall_p
Jtestbench/instr_pass | 000000 Ja10704 [410811 [410AC2 000000 IF80000 f000000 Jcaoo11
Jtestbenchiout_mem [owos Jo011 JFFC2 §0003 frrc2” Yooo3 Jooo4 Jeses |
festbenctyprog v _p ||| [ L L L L e ey
ftestbench/read_p
ftestenchywrite p || [ [_|]
ftestbenchydata_p CT e
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PSS VUS| N I O ¥ Oy |y O O |y Y s Y Oy IO
fesbenchyctk_ram_rom [ 1L L L L LIy ygre e ey ey L e Ly ey
h/en_rom
{testbench/en_ram
Jftestbenchyreset_p
ftestbenchystall_p
ftestbenchyinstr_pass (000000 (450101 450202 :45030314504041450}707"[4508081450{0»\1000000 Ja10704
Jtestbench/out_mem 0003 10004 Y0007 Jooos” Joois~  Joooa  Jooil” JFFC2” 0003
fesbenehyprog_rap | | [ LI L LU L L e ey
ftestbench/read_p
ftestbenchjwrite_p N S A
h/data_p 007} 0015 D011 )

frestoenctyetkp ([ | [ 1 [ L 1L 1 L LT |
Jestbenchyetk_am_om [ L [ 1L L L LD L LT T e ey
ftestbench/en_rom
Jjtestbench/en_ram
ftestbenchfreset_p
[testbench/stall_p
hyinstr_pass <= [410AC2 " [D00000 1FE0000_{000000 Ycaoo11 Joooooo

Jtestbenchjout_mem (0003 JFFC2 J0003 IUUU:_IUUDB
festbenehyprog_ra p [ | [ L I L L L L L]
ftestbench/read_p
ftestbench/write_p
h/data_p
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1. Tables of Registers and Memories in Simulation 4

Instruction Mem Register Data Mem
00 00 00
01 | 410104 01 0004 01 0004
R 02 | 410207 02 0007 02 0007
06=1AR 03 280020 03 0009 03 0009
04 | 410309 04 0015 04 0015
R 05 | 410415 05 05
~e2 06 | C80011 |[€=-=q 06 06
E % 07 | 000000 : 07 000A 07 000A
+ > 08 | 000000 ; 08 0011 08 0011
¢ | 09 ' 09 09
i | 0A ‘ 10 FFC2 0A FFC2
i | 0B ‘ 11 0B
+ | oC ; 12 0C
i | oD ' 13 0D
I ' 14 OE
i | OF : 15 OF
P10 ' 10
E 11 | 450101 ; 11
12 | 450202 ‘ 12
13 | 450303 ‘ 13
% 14 | 450404 ‘ 14
X 15 | 450707 i 15
16 | 450808 : 16
L 17 | 450A0A ‘ 17
18 | 000000 : 18
% 19 | 000000 ' 19
1A | 000000 ; 1A
1B ' 1B
1C ‘ 1C
1D ‘ 1D
1E : 1E
1F : 1F
> 20 | 41070A ‘ 20
o1 #1081 ‘ 21
W22 | a10AC2 ' 22
23 | 000000 ; 23
L 000000 : 24
L 25 | 000000 ' 25
26 | FBO000 et 26
27 | 000000 27
28 000000 28
29 29
2A 2A
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D. TMR ASSEMBLY WITHOUT MEMORIES

1. Schematic

This is the design without the latch at the bottom. Three KDLX processors are at
the left and the six voters at the center. Signals such as V_ERR, CID 1, CID 0, and ERR
are collected individually to four buses at the right. The read signal is used to enable
buffers for data from memory. The write signal is used to enable buffers for data to

memory.
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2. Test Bench

The clock high and low times are each 50 ns. The input setup time and output
valid delay times are each 10 ns. Since there are only two instructions, the test bench
looks simple. It loads data in registers and stores back to memory to check whether this

schematic works properly.

Time (ns) |u [ 100 [200 |E [400 [ 50 [ 6y [700
clk_p ma_A A 72 Y 3 Y 74 Y 75 \ o A 7 \ 8
data_m[15:0] = 0000 W05 O W53 R TN W00 p AT W O0BL
nstr a|23:0] C= (00000 LA pEEI W 00000 ORI (ORI (MO0 WAs0in2
mste b23:0] = 0000 OO0 HA40104 WOO0000 ORI M (W00 W AS0102
nstr ¢|23:0] L= (0000 LISV L EET HO00000 (U LTIV (MO0 HAsnin?
resel_p [ Y N

stall_p — 1

CID 0]50:0] <3

CID 1[50:0] <2

ERR[50.0] <2

V_ERR[S0-0]<

addr p]15:0] <3

data p[15:0] <3
pe pl130] <3
prog id p <

read_p L

write_r <=

Time (ns) (700 800 [ 900 J T | R 1206 [ 1300 1400

dk_p ma 73 kS f9 \ F10 \ A kS 12 Y\ J13 kS 14 \ Fis

data m[15:0] = (06l (M7 Vo070 F AT

mnsir al23:0] = 450102 W 0000 (MO (R0

insir b[23:0] = 450102 W00 [RITATEN] AT

msir ¢[23:0] L= 450102 W M0N0 (MO (RO

resel_p [

stall_p >

ClD &0 <3

CI 1a0) <2

ERR[50:0] <

V_ERR[S0:0)<

addr p|15:0] €3

data_p|15:0] <2

pe pl15] <3
i1

wrile_p <

3. Simulation Result

As described in Chapter V this schematic without a latch does not write correct
data into the registers due to a timing problem. This kind of error disappears when
memories are connected. Because this appendix only displays the final design of each
component, the imperfect simulation result is still contained here. The TMR with a latch
is discussed in Chapter V so it is not contained here even though it works perfectly with-

out memories.
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ftestbench/clk_p \ | | ‘ ‘ I—J

Jtestbench/data_m | 0000 0045 004C 0053 005A 0061 0068
/testbench/instr_a |000000 440104 000000
ftestbench/instr_b | 000000 440104 000000
Jtestbench/instr_c (000000 440104 000000

Jtestbench/reset_p

ftestbench/stall_p

Jtestbench/prog rd p || | [ [ ] | | ]

Jtestbench/pc_p [ ————————————0000 fooo1 foooz2 {0003 {ooo4 {ooos

ftestbench/read_p | ]

Jtestbenchfwrite_p
Jtestbench/cid_1 [ Dooooooeeooon XXXXX00000000 Tocoo0000000 To00ck00000000 Jr0000(00000000 oo T T XXX00000000 |
ftestbenchfcid_o [ Joco0000cw000 XOC((X00000000 Troootx00000000 [roo0tx00000000 Jr000000000000 Jemoomoomen [ P000¢X00000000 Jrovsoaomomo

Jtestbenchyerr | XCO000000(0000_ [X0((<00000000 [ 100000000000 | J0C0(X00000000 Jr000000000000 Jmoomoomom | OGOM00000000__ | Jieceomomwomo

Jtestbenchyv_err [_[XX000000X0000 [XoCOK00000000 Jiooooe00000000 {3XX006X00000000

Jtestbench/addr_p [~ Jooot 0000 Jooo4 {oo00

ftestbench/data_p

Jtestbench/clk_p M J | I i
Jtestbench/data_m 0068 006F 0076 007D 0084
[testbench/instr_a 000000 450102 000000
/ftestbench/instr_b 000000 450102 000000
Jtestbench/instr_¢ 000000 450102 000000

/testbenchfreset_p

Jtestbench/stall_p

Jtestbench/prog_rd_p | 1 ] 1 I 1 I 1 ] |

ftestbench/pe_p 0005 ¥ooo6 {ooo7 Yooos Yooog Yoooa

ftestbench/read_p

Jftestbench/write_p | |
Jtestbenchycid_1 0G0MD0000000 00000000000 Tooec00000000 Froooeonono00 0000000000000 [XGGXX00000000 Tooccx00000000
Jtestbench/cid_0 00000000000 000000000000 100000000000 Jrocoeonooooo Juooooooaooono F0C00(00000000 Tro0cx00000000
ftestbench/err XXXXX00000000 X00XXXD0000000__ | JX0C<X00000000 Jreccoonoooon Joooooooaooono Fxoocxk00000000_ | J0o0C(x00000000_ |
Jtestbenchjv_err X000(X00000000 Y0000000000000_PCCOXX00000000
ftestbenchyaddr_p 0000 ¥ooo2 Joooo
Jtestbench/data_p Wj

E. TMR ASSEMBLY WITHM

1. Schematic

This schematic uses the TMR Assembly without a latch. The instruction memory
on the left side sends one instruction to the three processors at the same time. Therefore,
this schematic is used only for checking basic functions. Nothing related with fault toler-

ant can be tested here.
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2. Test Bench

Since the instruction is pre-configured in ROM and RAM has default value 00035,

no data needs to be assigned. The test bench ends at 2900 ns. The clock high and low

times for both memories and processors are each 50 ns. The input setup time and output

valid delay are 10 ns for processors and 5 ns for memories.

Time ins) [0 T [200 [0 T400 |0 | B0 700 [=00 Toni [0t [1i
clk m RS NN T W - T VY £ U R R £ S W A W & T W £ W . [T W L W
en_ram [ )
©n_rom {— I—\H
adde_rom[T:} <
in_mem[15:0] <
out mem|13:0] <3
clk_p o AT 2\ LY Fa LE fo N T LY oo o, LITY 7
resel_p [ — ]—\II i
stall_p —
CID 0500
CID_1[s00]) <
FRR[50:0] <
V_ERR[S0-0] <3
data_pl15:0] <3
mstr pass|23:0] <3
prog_p <
rewd_p <
write_r <
3. Simulation Result
festbench/clk_p I 1 I 1 I 1 [ 1 I |
Jeswenchyekom || | ] 1 [ 1 | | | | | 1

Jtestbenchy/en_rom

Jtestbench/en_ram

ftestbenchyaddr_rom 00 Jo1 {02 fo3 Y04 Jos

Jtestbench/instr_pass |000000 ¥440301 Joooooo

Jtestbench/reset_p

Jtestbench/stall_p

Jtestbenchyprog_p || I 1 1 1 I

Jtestbenchyread_p B

Jtestbenchfwrite_p

ftestbench/cid_1 | 000000000000 DOOOGM00000000 Troooc 10 Pocoomo000000 Poooswooaonon T H I
ftestbench/cid_0 | 0000000060000 PO0O(X00000000 Tro00cx00000000 1000000000000 0000400000000 Trecomanatata {ooatatanaoo:

Jtestbench/err OOOOGOON0000 OCOX00000000 Tro00ax00000000 J2Co00(00000000 P000:00000000 T :
Jtestbenchfv_err [ 000000000000 Poooo00000000

ftestbench/data_p

ftestbench/in_mem

ftestbenchiout_mem |0000 10003
festbenchyckp || [ 1 [ ] I 1 I 1 ] 1
festoenchycem || I 1 I 1 I 1 ] ]

ftestbenchyen_rom

Jtestbench/en_ram

ftestbench/addr_rom 05 Joe j07 Y08 o Toa JoB

Jtesthench/instr_pass 000000 ¥a13406 Joooooo

Jtestbench/reset_p

Jtestbenchystall_p

festenctypreap || | 1 I I

Jtestbench/read_p

Jtestbench/write_p

Jfrestbench/cid_1 000 _§XCC0000000000 Pocoomonoonon Jrocexxooo00000 Tro00000000000 Troooo Teooco0000000
ftesthench/cid_0 000XD0000000 1000000000000 B0COM00000000 Tocooxooooo00D 1000000000000 1000000000000 TCOOC00000000
Jtestbenchferr 00OXO0000000 1000600000000 P0Coo0000000 TocooxoooooooD 1000000000000 1000000000000 DCOOC00000000

Jtesthenchjv_err 00CXXO0000000,

J/testbench/data_p

/testbench/in_mem

Jtestbenchfout_mem 0003
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ftestbench/clk_p ] ] 1 I 1 | | [ [ ] I
festhenchyclk_m | | i | ] 1 ] | ] | I [

Jftestbench/en_rom

Jtestbench/en_ram

ftestbenchyaddr_rom |0 [0C foo ToE ToF 110 HT T12

Jtestbench/instr_pass | [450407 {o00000

Jtestbench/reset_p

Jtestbenchystall_p

ftestoenchiprogp | || I 1 ] 1 1 o

Jtestbenchfread_p

[testbench/write_p |
Jftestbenchjcid_1 [ [ooca0o000000 oocon000000 Troooce Tecocio000000 Pro0o000000000 Jroceooo00000
Jtestbenchycid_0 | [occnonoooon Doocomonnnonn Treooco 000 000000000 1000000000000 Jxococoooooo0n

Jtestbenchyerr [ 00000000000 10000000000 Treconionoaca J oo .-;: POCOC0000000 1000000000000 Jrococoooooonn

Jtesthenchjv_err 2000000000000, o0 00000000000

Jtesthenchidata_p {ooos___ | }

Jtestbenchyin_mem {ooos___ [}

ftestbenchfout_mem |0003 fooos foooz

F. FAULT-TOLERANT TESTING

1. Schematic

This simulation uses three ROMs to achieve the goal of inserting different instruc-
tions. This simulates the condition whenever three processors have inconsistent instruc-
tions. The TMRA can also be modified to connect with three different RAMs. Then the
simulation will be more complex and much more time needed for analysis. As discussed
in Chapter V, such errors should be caught and corrected by the voters as long as no more

than one SEU occurs in a voter.
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2. Test Bench

The memories are pre-configured so no special settings are needed in this test
bench. The simulation ends at 3400 ns. The clock high and low times for both memories
and processors are each 50 ns. The input setup time and output valid delay are 10 ns for

processors and 5 ns for memories.

l'ime (ns) [0 100 [200 [300 (400 [ 500 | i) [ 700 [0 [ann L1000 [1
clk_m [REF 2 3 fa 5\ fo W Ff1 N8 \___fo \__ fio \ AT
en_ram —_ 1 0
=1 0

gy 72 f3Y F40 FER fo N 7N I fo T LTI 7
reset p [ W0 S

stall_p [T
CI Of500)
Cl 1300
LRI 50:00
VOERRS0:0]

0000

iyl

A

0000

-

3. Memories Pre-configuration

Only one instruction is different in each address of ROMs. This avoids multiple
errors being sent to the voters at the same time. The RAM contains non-repeated data in

each address. Details on how to read the error detection signal and analyze the error are

discussed in Chapter V.
ROM A ROM B ROM C RAM

00 000000 00 000000 00 000000 00 20
01 000000 01 000000 01 000000 01 21
02 000000 02 000000 02 000000 02 22
03 44010A 03 44010A 03 44010A 03 23
04 440203 04 44020B 04 44020B 04 24
05 44030C 05 440A0C 05 44030C 05 25
06 44040D 06 44040D 06 350911 06 26
07 000000 07 000000 07 000000 07 27
08 000000 08 000000 08 000000 08 28
09 000000 09 000000 09 000000 09 29
0A 000000 0A 000000 0A 000000 0A 2A
0B 450106 0B 450103 0B 450103 0B 2B
0C 450208 0C 450207 0C 450208 0C 2C
0D 450309 0D 450309 0D 450302 0D 2D
OE 450410 0E 450410 OE 450410 0E 2E
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4.

Jtestbenchyclk_p
Jtestbench/clk_m
ftestbenchien_rom
Jtestbenchyen_ram
/testbench/addr_rom
Jtestbench/addr_ram
instr_passa

Simulation Result

| 1

00

Jo1

Joz

Y03

¥oa

{01

00

000000

1440104 1440203

ftestbench/instr_passb
Jtestbench/instr_passc
ftestbench/reset_p
Jtestbenchistall_p
[testbench/preg_p
ftestbenchjread_p
Jtestbench/write_p
ftesthench/cid_1
ftestbench/cid_0
feestbenchierr

nfv_err

000000

f440108 {440208

000000

1440104 Jaa0208

| L |

[ T:oococconmo00

[>000CK00000000

Tooocwooooooo

Pococwoooooon

MOOOOC00000000,

POOOC00000000

Too0X00000000

[ $0o0c00000000

:xu)ou.luuuuuuu

FOOOCOCO00M0000

XOOOCK00000000

P00 00000000

0000000000

Trooccocootonn

2OOOCX00000000

vdata_p

in_mem

Jtestbench/out_mem

hyiclk_p

0000

1 I

h/clk_m

1 ]

festbench/en_rom
Jtestbenchfen_ram
ftestbench/addr_rom
ftestbenchfaddr_ram
h/instr_passa

04 Jos

Jos

Toz Jos

foa

00 Toa

Jos

Toc oo

[oo

440203 |44030C

Ja40400

1000000

ftestbench/instr_passb
ftestbench/instr_passc
ftestbenchyreset_p
frestbenchystall_p
h/prog_p

440208 [J¢40m0C

Ja4040D

1000000

“440208 [T44030C.

f3s0011

Jo00000

1 I

ftestbench/read_p
[testbenchfwrite_p

hicid_1

i Thocoowoo

30O03(00000000 T
1

000000 [ BX0006X00000000

h/cid_0

1 T ocoomo

ftestbench/err

T

000000 | 500000000000

b=

1 T focoomo

0000000000000

000000

3000000000000
e &

fv_err

K I

hfdat@a_p

ftestbenchiclk_p
ftestbench/clk_m
Jtestbenchyen_rom
ftestbenchien_ram
[testbench/addr_rom
[/testbench/addr_ram
hfinstr_passa

0020

Too2a

{oo2e

joozp

Y0020

s JOB

foc

Joo

Joe

Tor

T10 f11

00

Joz

Jos

fos

T10

450106

J450208

1450309

{450410

:DDDGGG

ftestbench/instr_passb
Jtestbench/instr_passc
ftestbenchfreset_p
ftestbenchystall_p
[ftestbench/prog_p
ftesthench/read_p
ftestbenchfwrite_p
ftestbench/cid_1
feestbench/cid_0
festbenchferr

1450103

J450207

1450309

{a50410

:DDDGGG

450103

Ja50208

1450302

fa50410

Yooo0oa

L 1

[ 1000000000000,

[ 1:0000(00000000,

0000000000000 J 0000000000000 Troocce00000076 Jo0000000000

78 Jooucn00000se §00160000000;

58 roocon0000000 §0016800000000 F oo

[ Poccomonnonod.

T:0000(00000000

0000010000028 | 0000000000028 Joo0ce00000000 00000000000

00 Frooucmoonanss fooocaoonao:

58 roocon0000000 §0016800000000 Jeosommmn

JOCOO00000000

T:0000(00000000

0000000000028 0000000000028 Jooceen0000076 Jo0000000000

78 Fooucnoononss fo00160000000;

58 rooconoo0a0n §0016a00000000 Feosommen

XOCOX00000000

hiv_err

P

y v

h/data_p
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fooee . |
Coz8 | }

-
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I} Iy
-

hfin_mem
ftestbenchfout_mem
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G.
1.

2.

RECONCILER

Schematic

Test Bench

rec

clk_r
—reset_r
rd_r
wr_r
=
=

=

addrin_r(15:0)

pc_r(15:0)

datain_r(23:0)

addrout_r(15:0)

dataout_r(23:0)

wrout_r

state_r(3:0)
instr_data(23:0)

mem_data(15:0)

—
==

=
=
=

The clock high and low times are each 50 ns. The input setup time and output

valid delay are each 10 ns. Manually set values in the data address, the program counter

and the data were used to distinguish which one was fetched.

l'ime (ns) [ix [Tk | BT 300 | ) [ 5000 a0 [700
clk r ma # AN 72 Y 3 i 3 AN s o M, 77 M\ b3
reset_r — | W0 L

rd_r =] pY] I

wWr T = 1

wddrin ff 15:0] = G006 [T W06, Woon Kool ) {TTIES oot ¥on24
pe_r[15:0] = (0l [ WK W 002 WO003 W W 0003 W06
datain_r[23:0] = G000 ORI [T WG T HOnCC YOOI LR
addrout_r[15:0] <3

mstr dmaf23:0] <<

dataou_r|23:0] <

wroul_r <

state_r|3:0] <

mem dutal 15:0]<t==

Time (ns) o0 [ 800 | BT 1w [11on 1200 | IR Tran
clk_r o _fs Y fo A\ £10 \S A1 . F12 \ 13 N\ 14 \ Fis
Fesel r | —

rl ¢ =

wrr — A S

addrin_ e[ 15:0] > 0024 h TR pATTE JO0G6 LT {0042 [T pTTH
pe r[15:0] [T 0007 [ R D0 0008 i Wooup
datain_r|23:0] = GO0122 00165 ) EER HOICE X OUO1EL G023 1 A 00264 00257

addrout 1 15:0] <3
instr_dut]23:0) <3
dataoui_r23:4] <3
<
<

wrowl
state_r|3:0]

e <

3.

Jtestbenchfclk r
Jtestbench/freset r
Jtestbench/rd_r
ftestbench/wir_r
Jtestbench/addrin_r
ftestbench/pe_r
ftestbench/addrout_r
Jtestbench/datain_r
ftestbench/instr_data
[testbench/mem_data
/testbench/dataout_r
ftestbench/wrout_r

Jtestbench/state_r

Simulation Result
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RECONCILER WITH KDLX AND MEMORY

1. Schematic

adcir_oul70)

addr_box

sata 150} “

dix
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[testbench/en_ram

2. Test bench

The clock high and low times for KDLX, Reconciler, and memory are 50 ns, 25
ns, and 25 ns, respectively. The input setup times and output valid delays for KDLX,

Reconciler, and memory are 8 ns, 9 ns, and 10 ns, respectively.

Time (ns) [0 150 [ion L1500 1200 1250 | I | KR | ETNT) | ERT] 50 550 [aon [os0 [700
clk_m . El 4 : 7

©n_ram — AXi

adde m|70] <

din_m[23: o |

doutm[23:0] <33

clk_p N 73 N, 4 \ 5 i 7o ) 7 A 78
resel_p A1

stall p
alde_pl15:0] <3
nstr_p|23:0] <
pe_p[15:0]
prog p
remd p

0000

wrout_r : <
3. Simulation Result
ftestbench/clk_p | | | [ | [ | [ | [ ] [ | [ ] [ ] [ | [

ftestbench/clk_r [ Iy I N B O
Jtestbenchiclk_m 8 I [ I [ [ Iy I [ N A I O

ftestbench/reset_p

Jtestbench/reset_r

ftestbenchy/stall_p

ftestbench/prog_p | | L] L 1 ] 1 J 1 J | ] 1 J 1 ] | J [
Jftestbench/pc_p | F—————————0000 fooo1 Yoooz Yooo3 Yoooa Yooos ¥oooe Yooo7 {ooos
ftestbench/addr_p [ 0001 0000 Joo4o {0041 {004z {0043 {0044
Jtestbenchiaddr_m {o1 fo2 Jo3 fo4 fa0 Jos fa1 Tos fa2 Joz Ta3 Tos T24
ftestbench/instr_p | J000000 J440140 Yaao241 ¥a40342 Ya40443 Jas0544 J44064a5 Joooooo Joooooo
/testbench/read_p | I 1 ] 1 I | ] [
ftestbenchfwrite_p
ftestbenchydin_m |}
Jtestbench/dout_m |000000 Ja40140 Yaa0241 ¥a40342 ¥440443 {o000AA fa40544 fooooss {440645 foooocc foooooo foooonb 000000 Jooooee
Jtestbench/wrout_r [~
Jtestbench/data p | + fooaa |} {ooss | } fooce [} foooD [} {ooee |
Jtestbench/state_r [0 1 ) N £ SR §) (O f o {2 o 12 0 12 0 |2 0 12
ftestoenchycli_p | | ] I 1 I 1 ] 1 ] | ] | ] | I [ I [ I L |

prestoenctyekr | [ 1 [ L L LT LT I N S I
Jtestbench/clk_m 8 S Sy O I

en_ram

[testbench/reset_p

Jftestbench/reset r

[testbench/stall_p

ftestbench/prog_p | | 1 I 1 I 1 ] 1 ] | ] | ] | I | I | I [ E—
ftestbench/pe_p | (0009 {oooa fooos Joooc Joooo Joooe {oooF foo10 foo11 foo12
Jftestbench/addr_p | [0045 Joooo fooz0 foo21 {0022 10023 To024 {o02s
ftestbenchfaddr_m |- J09 Jas Toa JoB foc {oo 120 Toe {21 Tor 122 Tio 123 } 1 124 T2 125
Jtestbenchyinstr_p | J000000 Jas0120 450221 Y450322 Yas0423 Jas0524 Jas0625 Joooooo Joooooo Toooooo

ftestbenchyread_p | | LI

Jtestbenchjwrite_p | [ | [ | J ] J ] J |
Jtestbench/din_m {oo00AA} {ooooes} {oooocc} {00000 } {oo00e€ | {0000FF |
/testbench/dout_m | Jo00000 f0000FF 450120 J450221 Y450322 Y450423 Joo00AA f450524 f00008E f450625 J0000CC f000000 Kouoobgloooooo [ouoosé {o00000 [oooors
Jtestbenchjwrout_r | | | | | J | J | J |
Jtestbench/data_p [‘+———100FF | } foosa | F—Hooee | +——oocc [+——ooop | ——{ooeE | ——{00FF |

Jtestbench/state_r |:[0 IZ 0 [1 0 Kl 0 Kl 0 KS 0 Ki a b a H} a :(3 a :(3
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ftestbench/cli_p | | ] I ] I ] | ] | | | | | | J [ J [ J L
Jtestbenchiclk_r [N I 0 [ N
Jtestbench/clk_m 8 Y O I Y O I

ftestbench/en_ram

Jtestbench/reset_p

ftestbench/reset_r

[testbench/stall_p

ftestbench/prog p | | 1 I 1 I 1 ] 1 ] | ] | ] | I [ I [ I [I—
ftestbench/pe_p | (0013 foo14 Joois Joois Jooiz Joois o019 Jooia foois fooic
ftestbenchfaddr_p | 0000 foozo fooz1 fooz2 {0023 Y0024 Yoozs {ooo0
ftestbenchfaddr_m | [13 T14 {15 f16 {20 Tz 121 Tis {22 Tio 123 Tia 124 Iie {25 Tic
Jtestbenchfinstr_p | 1440120 fa40221 Ya40322 {440423 J240524 Ja40625 1000000 Joooooo Joooooo Toooooo

ftestbench/read_p ] | | | | | | J | J | J

Jtestbench/write_p | |

Jtestbench/din_m ]

ftestbenchydout_m | J440120 fa40221 faa0322 {440423 Jo000AA 440524 Jo000BB {440625 foooocc foooooo foooopo{oooooo fooooeE (000000 [0000FF (000000
Jtestbench/wrout_r | |
Jtestbench/data_p | + Jooaa ooBB oocC | —Jooop [ ——AooeE [ ——JooFF [ ——

Jtestbench/state_r |:[0 Il 0 [1 0 Kl 0 KZ 0 KZ 0 KZ a KZ a HZ a :(2 a :(l

I INTERRUPT

1. Schematic

The rfe_i(23:0) is used to monitor the RFE instruction. The pc_in(15:0) is con-
nected to the program counter of KDLX. The signal se/ i(23:0) controls the muxes in
order to insert the TRAP and Jump instruction sent out from trap i(23:0).

interrupt
—clk_i sel_i(23:0) ——
reseti pc_out(15:0) ——
—err
trap_i(23:0) ——
i rfe_i(23:0)
1 pc_in(15:0) state_i(3:0) ——

2. Test Bench

Random numbers are assigned to rfe i(23:0) and pc_in(15:0). An RFE instruc-
tion at time 900 ns emulates the end of the ISR.

156



lime (ns) [0 [50 [100 [150 [200 [250 [300 [350 [400 [450 [300 [550 [600 [650 [700 [750 [800
elk i m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7
rfe i[23:0] T 000000000000 000035 £ 00006A ¥00009F {0000D4 Y 000109 ¥ 00013E § 000173 # 000TA8 ¥ 0001DD Y 000212 ¥ 000247 ¥00027C ¥0002B1 #0002E6 K 0003
pe_in[15:0] = 0000 0000 Y000l ¥ooo2 Yooz Yoood  Yooos 0006 %0007 %0008 Y0000 YoooA  WoooB_ X000C  ¥oooD  ¥000L  YOOOF
err = 0 1 i]
reset i o 0 1
pe_out[15:0] <=
sel_i[23:0] <3
trap_1[23:0] <3
state_i[3:0] <3
lime (ns) [800 [830 [900 [950 [1ooo 1050 Jrroo Jriso Ji2e0 Ji2so Ji3o0  J1350  [1400  [1450 J1500 J1550 [1e00
clk_i {7 18 19 20 21 22 23 24 25 26 27 28 29 30 3l
rfe i[23:0] = 00031B 000338 ¥F80000 { 0003BA % 0003EL 000424 (000459 ¥DO048E ¥ 0004C3 {0004F8 ¥ 00052D ¥ 000362 £000597 ¥ 0005CC { 000601
pe_in[15:0] = 0001 0010 0011 {0012 0013 0014 o015 Ybole 0017 ¥0018 {0019 001A 0018 J001C 0010
err —
reset_i [—
pe_out[15:0] <3
sel_i[23:0] <3
trap_i[23:0] <3
state_i[3:0] <3
. .
3. Simulation Result
Stesthenchjelk_i [ |
|
ftestbenchirfe |
1
ftestbench/err l
{ |
Jtestbenchireset_i |
Jtestbench/pe_out [} |
Jrestbenchysel_i [} ‘
i
1 |
B
|

frestbench/state_i

festhenchyclk_i
ftestbench/re |
[testbenchypc_in

frestbench/err

Jtestbenchireset_i

J.
1.

Schematic

INTERRUPT WITH KDLX AND MEMORY

The Reconciler is not included in this schematic so two memories are used for a

Harvard architecture. In this design, the Interrupt only needs to monitor the instructions

from the ROM. The error signal is triggered manually in the test bench. Once the ISR

starts, the instruction on the bus will be replaced with the TRAP instruction and lead the

KDLX to implement the specific ISR. The last instruction in the ISR is the RFE instruc-

tion which activates the Interrupt to insert a new Jump instruction into KDLX. Then the

circuit goes back to its normal operation.
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2. Test Bench

The KDLX clock high and low times are each 50 ns. The input setup time and
output valid delay are each 10 ns. The /nterrupt, ROM and RAM all run in double speed
with a clock high and low time of 25 ns. The setup time and hold times are each 3 ns.
Generate an error in the test bench at time 900 ns to check the function of the state ma-

chine. This test bench stops at time 4900 ns.

Time ins)h [0 [0 Two Tiso Tzoo 250 Tao0 350 [400 [450 500 [550 [e00 [650 [700 [750  [800 850 (900 [950 [1000 1050 11
clk m ST ERWYER T ERW AW TRV SR S TS T ST S N EW T E W T ATUW ST EE N ST ETU ETIW S5
en_ram [ 1]

©n_rom — ]—\_ll

e — 0 FARY

resel i =1 A0} i

addr ram|7:0] <3
din_ram|15:0] <
dout_ram|15.0] <
pe_ou150] <

sel_i]23-0] L

state 1] 3:0] <

trap_i[23.0] <

ek p IS S NS R W W R SR T W R S S S T S L S 5 [ S— | R S—
resel_p [ Y I
stall_p 1

data_p|15:0] <

instr pass[23:0] <3

pe_pl15:0] <

prog_p <

read_p <

write_p <

159



3. Memory Pre-configuration and Results

The highlighted Opcode is where an error occurs in the test bench. Contents in
the Instruction Mem and the upper half data of the Data Mem are pre-configured. Regis-

ters and the lower half data of the Data Mem are the final values after the simulation is

done.
Instruction Mem Register Data Mem
00 2D 00 00
01 2E 01 0044 01 0044
02 440101 2F 02 0045 02 0045
03 440202 30 000000 03 0046 03 0046
04 440303 31 000000 04 0047 04 0047
05 440404 32 000000 05 0048 05 0048
06 440505 33 450420 06 0049 06 0049
07 440606 34 450520 07 004A 07 004A
08 440707 35 450620 08 004B 08 004B
09 440808 36 450720 09 004C 09 004C
0A 440909 37 411A11 10 0055 0A
0B 450110 38 411B22 11 0066 0B
0C 450211 39 411C33 12 0077 0C
0D 450312 3A 000000 13 0D
OE 450413 3B 000000 14 OE
OF 450514 3C 000000 15 OF
10 450615 3D F80000 10 0044
11 450716 3E 000000 11 0045
12 450817 3F 000000 12 0046
13 450918 40 000000 13 0047
14 450A19 41 14 0048
15 450B1A 42 15 0049
16 450C1B 43 16 004A
44 17 004B
: . 45 18 004C
2C 46 19
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4.

[testbench/clk_p
Jtestbench/clk_m
[testbench/en_rom
ftestbenchfen_ram
Jtestbench/err
Jtestbench/reset_p
[testbench/reset_i
Jtestbench/stall_p
ftestbench/addr_ram
Jtestbench/data_p
[testbench/din_ram
[testbench/dout_ram
ftestbenchfinstr_pass
ftestbench/pc_p
Jtestbench/prog_p
[testbench/read_p
Jtestbench/write_p
Jtestbench/sel_i
ftestbench/trap_i
Jtestbench/pc_out

Jtestbench/state_i

[testbench/clk_p
Jtestbench/clk_m
Jtestbench/en_rom
Jtestbench/en_ram
Jtestbench/err
Jtestbench/reset_p
Jtestbench/reset_i
Jtestbench/stall_p
ftestbench/addr_ram
Jtestbench/data_p
ftestbench/din_ram
ftestbench/dout_ram
ftestbench/instr_pass
ftestbench/pe_p
[testbench/prog_p
[testbench/read_p
ftestbenchfwrite_p
ftestbench/sel i
Jtestbench/trap_i
Jtestbench/pc_out

Jtestbench/state_i

Simulation Result

1
Ho1 Joo Yo1 oz {03 o4 Jos 30 Too
0000 o044 Jooas Joo46 foo47 foo48 Joooo
000000 440101 ¥a40202  Y440303  Y440404  Y440505  Jewsos {280030  [{o0000D
[——{oooa [{ooo1 fooo2 0003 {0004 0005 To00s! 0007 {ooos 0009 ¥0030] 0031 Joo32!
FFFFFF {00000 FFFFFF

{280030"__J{oooo00

0008
0 M1 0 it o N o Yo N 0o 1 o o T2 B fa ¥ ¥ Iz Ms s B o
00 Y20 {56 177 Joo Jos
0000 fooa7 Joo4s [foooo Joo48
1
000000450420 {450520  J450620  [450720  §411A11  J411B22  {411C33 _ 000D0D Yreoc0 fCBO008 [f000000 |
0033 Y0034, 0035 fooze 0037 {003’ 0039 Too3A 003B foo3c 003D ¥003€E 003F Yooos:
N B B O |
FFFFFF foooooo[{FFFFFF
80008

8 o s Yo ¥z fo Yz Mo ¥z Yo Yz Yo Wz Yo Iz Yo s Jo Iz Yo Mz ¥ ¥a Y8 fo N1 fo 11
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testbenchiclk_p S [ [ S S [ S T S S S ST
frestbenetyck m [ ][] [T [ JEpEpERE SRR RSN NN NN

Jtestbench/en_rom

ftestbench/en_ram

Jtestbench/err

[testbench/reset_p

Jtestbench/reset_i

Jtestbench/stall_p

Jtestbenchfaddr_ram | {00 fo7 Jos Jos {10 11 Ji2 {13 Y14 Iis {16 117 T8
Jtestbench/data_p {o0an}——{oo4E 004C 0044 0045 0046 0047 0048 0000 004A 0048, [00ac
ftestbenchfdin_ram {0044 0045 0046 0047 0048 0000 0044 0048 [00c

/testbench/dout_ram |004B {0000 Joo4a foo4B }o04aC Jooao [{o044 foooo {0045 foooo foo4e Joooo {0047 foooo foo48 foooo [{o04A {oooo foo4e Joooo

ftestbenchfinstr_pass |#0707[440808  fa40909  faso110  [aso211  faso312  fasoa13  fasosi4  fasoe1s  Jaso716  [4s0817  faso918  Jasoa19  [asoBia  Jewcs
ftestbench/pc_p [§0009___ J000A___ |{o00B___ JoooC_ [JoooD_ {000E__ [§00OF_ Joo10_ [foo1i_ Joo12_ [foo13_ {0014 [{0015_ Joo16__|
Restoenchprog p | | [ L {7 L[ L [ L L
[testbench/read_p \_,—LJ—\_[
restbenchiwrite p N )y O S S B B

ftestbenchysel_i |FFFFFF

ftestbench/trap_i

Jtestbench/pc_out

Jtestbenchystate_i [0 f1  fo  f1 fo fi o ot fo fr Jo It 0 f1 o o ft o N o fo ftofo Tt 0o [t fo Tt

Jrestbenchiclk_p [N | B U T B S
Jtestbench/clk_m l_|_l_|_l_|_l_LJ—

Jftestbench/en_rom

Jtestbench/en_ram

Jtestbench/err

[testbench/reset_p

Jtestbench/reset i

ftestbench/stall_p

Jtestbench/addr_ram | 19 1A f18 Joo
ftestbench/data_p 0055 0056 0077
ftestbenchfdin_ram 0066 0077

Jtestbenchfdout_ram [(004C {0000 0055 {0000 fooss foooo J0077 joooo

Jtestbenchfinstr_pass [450cie[000000
ftestbench/pe_p [ 10017 foo18 0019 foo1a 0018 foo1C 001D foo1E B
Jtestbench/prog_p l_J_l_'_l__

[testbench/read_p

ftestbenchywrite p [ [ | [ | | ||

Jtestbench/sel i |FFFFFF

Jtestbench/trap_i

Jtestbench/pc_out

Jtestbench/state i [0 {1 fo  f1 fo Ji fo 1 Ho K1 Jo 1 0 1 fo N1

K. THE FULL DESIGN WITHOUT ESSD

1. Schematic

Three RAMs are used to provide inconsistent data to TMRA. This schematic is
designed for simulating the circumstance at the occurrence of an error. The real design

needs only one RAM and does not have to triplicate the instruction and data buses.
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2. Test Bench

The clock high and low times for KDLX, Reconciler, Interrupt, and memory are
50 ns, 25 ns, 25 ns, and 25 ns, respectively. The input setup times and output valid de-
lays for KDLX, Reconciler, Interrupt, and memory are 8 ns, 9 ns, 9 ns, and 10 ns, respec-

tively. The ending point of this test bench is at 4900 ns.

The signals between clk i and clk_m are associated with the Interrupt clock cycle.
The signals between clk_m and clk_p are associated with the memory clock cycle. Each

signal in simulation has to be associated with one clock.

Time {ns) [0 [50 [ 100 [150 [200 [250 [500 [350 Ja00 [450 [500 550 [ 6 |60 [ 7in
elk_i RSN U I W R W O W N W W N W N S L R [T S Y W W R W S T JEI
reset_i =1 W n

e <

pe out i[130] <3
sel i[23:0] <2

state_1]3:0] <

rap_i[23:0] <3

<lk m mn 1 12 13 14 13
onm -

dout_ma|23:0] <3

doul_mb|23:0) <3

dowt_me[23:0] <3

clk_p i '\ 72 \ 3 \ 74 \ s \! o ", 17 Y, 75
resct p — 1 o S

stall_p — 1

adde_p[15:0] <3

cid O[30) <2

cid 1[50:0) <3

daa p[15:0] <3

pe pl13:0] <3

prog_p <

read_p <

verr| 50| <3

write_py <4

clk v A N I W L W S W R W e R S L T T R e e T R
resel_r 1\ I

data_ra[15:0] <3

data_rb[15-0) <3

data re]15:0] <3
mste_ra|23:0] <3
mste_rh|23.0] <23
wste_re[23:0] <
state_r]3:0) o
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ISR

3. Memory Pre-configurations
RAM A, B and C
00 000000 2D
01 000000 2E
02 44014A 2F
03 44024B 45014A
04 44034C 45024B
05 44044D 45034C
06 44054E 45044D
07 44064E 45054E
08 000000 45064F
09 000000 000000
0A 000000 000000
0B 44014A 000000
0C 44024B F80000
oD 44034C 000000
OE 44044D 000000
OF 44054E 000000
10 44064E
11 000000
12 000000
13 000000
14 000000
4A 0000AA
4B 0000BB
4C 0000CC
4D 0000DD
4E 0000EE
. 4F 0000FF
2C 50
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4.

Simulation Result

pestenchyok p ([ L[ L/ L[ L [ o [ L\ L o4
PtV I I e e e e 4 e I o I A R B A N R B I B
PtV 1 O e O I

LY ST O Y e e 1 Y Ay 1 0 Iy B A B O
/testbench/reset_p

frestbenchpc_p ——foooo_ [foooi_ Joooz [fooos_ Jooos  [fooos_ Yooos_ [foooz_ fooos_ [fooos_ foooa_ [foozo_ Yoozi |
Jftestbenchfaddr_p {0001 Joooo Jooaa {oo0as Yooac fooap {o04E Jooar Joo3o {oooo
frestbenchyeid_1 [f I I I 1 [ T T I—T - [ [~ F— T [Joomomomn Jucooomoonm

Jrestbenchycid 0 [ I I T 1 [ | S (N N () | S S S S | S S =) I

/data_p

ftestbenchydata_ra |} 00AA 00BB 00CC, 00DD 00EE 00FF

Jtestbench/data_rb [} 00AA 00BB 0011 00DD 00EE 00FF

Jtestbench/data_rc [} 00AA (00Bi 00CC, 00DD 00EE 00FF
Jtestbenchydout_ma [000000 [44014A__|}44024B__ ]44034C__| Jsw0wo foooan fssasee [ooooes fssaesr [oooorc [anoaoo Jaoooos fououno Jooooee Joaoouo Y0000FF{45014A__ 4450248 |
Jtestbench/dout_mb (000000 Ja4014A 440248 }44034C__| J+0=40 fooooas fssasee [o0008s fasus+# [oosort Juooono Juosooo fooouoo Jeoooee Joaooon Joo00FFf45014A 145024
Jftestbench/daut_mc (000000 Taa014n  [f44024B  J44034C | fesoso fosooas feaosee fosoons [sauear Joococe Joooaoe Joocoon fooooo Jooooee Jeoooon YoooorFf45014A  f450248

Jtestbenchferr_i L L L 1 L . =_|_|_J_‘_|_‘_J_‘_|_‘_J—I—

Jftestbenchfinstr_ra | 1000000 Ja4014a  |J44024B  Ja4034C  [fa4044D  [44054€ |Jad064F  Joooooo [Joooooo  Joooooo  [fasoi4a  Yasozam
ftestbenchyinstr_rb [{000000 440144 44024B___ }44034C__ | 144044D_ J44054E_ |]44064F _ [000000 000000 000000 450144 1450248
ftestbenchfinstr_rc [§000000 Taa014A 440248 144034C__ | J44044D__ J44054E _ |]44064F 000000 000000___J000000 45014 1450248
ftestbench/pc_out_i } @}

Jtestbench/trap_i |} {280030 __[Joooooo P
Jtestbenchyread_p Ly r g
ftestbench/write_p

ftestbench/sel i [{FFFFFE Joooooo \FFFFEF
Jtestbench/state_i [{0 |1 Jo i Yo Jr [Jo Hi fo i [fo 1 o i ffo i Yo ¥z [f+ Y5 Yo 7 [fs s f8 5
ftestbenchystate_r |10 [1 o Yt Yo Ji (Yo f1 Yo o Yo 2 Yo T2 Tl Y2 Yo t2 Yo Yz Yo 2 [fo 1 o 11
I\II\HIIlII\IIH IIIIIIIHIIHIII HIIIIII\II\HII\IIIII\HIH'IIII\H IIIIIIHI‘HII\II
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Jtestbench/reset_p
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Jtestbench/addr_p [0000 ¥004A fooaB Jooac {o04D Joo4e Joo4F {oooo Jooos Toooo

ftestbenchycid_1 [Joseamooomos F fr Ao e T e [l o o P [P e I H | [ I I

ftestbenchycid_0 [Joeamooomoo F fr A e T e e e o P [P e F I H | I I I

hidata_p {o0AA
Jtestbench/data_ra
/testbenchydata_rb
Jtestbench/data_rc
Jtestbench/dout_ma | {45034C {asces0 [oooans (ssusee [ooooea [4scear Joocece Joooaoo feowoon fooeoo Jocones {ooonos JODODFFYFBO000 | 000000
Jtestbench/dout_mb | [45034C Yasoea0 [oooann |(ssusee [ooooms Jasoser Joosace Joooaoo foooono foooon Foooses fooooon ¥0000FFEFBOD00 000000
Jtestbench/dout_mc | f45034C  fss0+0 [oooass Yasosse Joocoea Jasoesr Joosoce foooaoo Yoowoo fouoooo Yoooee Yoooooo JoooorrfFsooon | {oooooo

festvenchyerr i f——"A—  |bb—  }—" [V—  }F— |F— |} ! ! ! :
Jtestbenchfinstr_ra | }45034C  f45044D  |Jasos4E  Jasoear  [Joooooo  Joooooo  [Joooooo — Joonoooo
ftestbenchyinstr_rb [{45034C___{45044D__|[45054E___ J45064F 000000___J000000 000000___f000000
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Jtestbench/trap_i {csooos_ }

[testbench/read _p
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ftestbenchystate_r [f0__ J1 0§13 [0 J3 Jo }3 [fo 43 Jo Y3 [0 I3 o [fo i Yo J1 [fo Jr Jo {1 o {1 o |1
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Jtestbench/clk_p
/testbenchycli_i

I I Y e e oy B A W I O B S
I I Y e e oy B A W I O B S
JoUyreryeryyeryeryyyy gy

Jtestbench/clk_r

ftestbench/clk_m

/testbenchfreset_p

Jtestbenchy/pc_p [foooB_ foooc_ |fooop_ JoooeE_ [foooF Jooio_ [fooii_  jooiz_ [fooi3_  fooi4 [foois_ Joois_ [fooiz_ foois_ |
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ftestbenchycid 1 |1 ¥ ¥ | | e ) S (| S e ey | S e—| I i I I
Jtestbench/cid 0 1 H I e e ) [ (i S e ) | Sy S| | 1 I If

ftestbench/data_p

/testbench/data_ra

h/data_rb

ftestbench/data_rc
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Jtestbenchjerr | H : L : |‘_|—| I—‘ I—I }—| I—‘ i L L L
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/Jtestbench/trap_i
ftestbench/read_p N 1 [ N I N 1 A N | B
[testbenchfwrite_p
ftestbenchy/sel i |FFFFFF
Jtestbenchystate i [f0 J1 o Tt [Jo i Yo Yt Jo T fo i (o Hr Mo T o Nt Yo Y (o Y1 Yo [0 H o
ftestbenchystate_r |10 J1  fo J1 ffo Ji Yo Y2 Yo f2 fo Y2 o 2 Yo Yz Yo Yz Yo f1 [¥o fr Yo Y1 [fo 1 fo i
HIIHIIIlII\IIIH! IHIIIIIIlIIIHIIVH vecrrreerbovccrocborercococ ke ooccc becrerecoc beccoco boocoroecc boocceeoc boocceecoe b
ns 3us 3. ns 4 us 4
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5. Zoom-in Figures of cid [ and cid 0

10007

(0008

{0009

| 000A

1004C

004D

|004E

(004F

...............

L. THE FULL DESIGN WITH ESSD

1. Schematic

The ESSD intercepts all connections on RAMs when the error syndromes are be-

ing stored. The clock for Interrupt and Reconciler are wired together since they work in

parallel.
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2. Test Bench

The clock high and low times for KDLX, latch51, Reconciler (or Interrupt),
ESSD, and memory are 50 ns, 25 ns, 25 ns, 25 ns, and 25 ns, respectively. The input
setup times and output valid delays for KDLX, latch51, Reconciler (or Interrupt), ESSD,
and memory are 8 ns, 8 ns, 9 ns, 9 ns, and 10 ns, respectively. The test bench ends at

time 4900 ns.

lime insh [iv [50 Trid [150 200 [230 | S 1530 | ETIH) [350 500 [550 [l | ) [ 700
clk_ir I T T - T T N T T T T T T L A T A
esel_ir =T\ 1
.imu- I:"II| <

0] <3

wap_i|23:0] <3
el [ L N W W S W W L W W T WS T W ) S - N W W S
ek m ma 1 2 3 4 5 3 7 8 El ] 13 14 L
en_m [T hXLl
dowt_mal230] <3
dout [23:0] <3
dout_me]23:0] <3
<lk_p e \ 712 \ 7 N\ 74 A\ 73 \ bl \ 77 \ 7
Tesel_p = o Al
prog_p ]
v_err| S0 L |
<l s [N AR F24 FE Y a0 ETR Foooh F7 4 R Fo Fun FI F124 HEIRY Fra ' Fis
resel_s = X 1
addr_in[15:0] <3
addr s[15:0] <
cid(in[30:0] <3
cidl in[f0:0] <=3
I <
exs]23:0] e |
e ml15:0] <3
pe_vum[15:0] <
sel_adde] 15:0] <3
sel_s|23:40] <
sel_wr =
p—]
<
[ |
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3.

Simulation Result

festbenchyekp | L [ L | [ _ [/ . [ oo o r—L {1 > 1L
/S I e I S o 6 B B S I
prestenchyetkir | L L LI L L L Ly Ly g e e e iy
PEE= ey T I I T I e e I I 1 O B O R O A
JEs VLT e e e e 1 e 1 s Ny Iy S oy B O
[ftestbench/reset_p
Jtestbench/pe_in OO0 Joooo fooo1 foooz Jooo3 Jooo4 Jooos 10006 {ooo7 fooos o009 Joooa Joo30
ftestbench/addr_in O0OC Joooo Jooaa Yoo4B {ooac fooaD foo4E Joosr Joo30
h/addr_s [X00 Y0059 fooss foos
Jtestbenchyeidl_in [JOOUCOCCOOOOK JoosEsooo00000
Jtestbench/cid0_in [Xo00000000000C Joooooooo00000
/testbench/dout_ma 000000 J44014A  [}44024B  f44034C | Js00 Jooonan fasasee fooooms fsswssr [oococe Joosooo foooon Jooomon Yooooee foooooo Foooorr fesorex (000000
ftestbenchfdout_mb (000000 Ja9014a  |f440248  §44034C | Jeswsao fooonas Jaaasse fooooes [asoeer {aooors [oosono foooann Jenouoo Jooooer foanooo FoooorFiesoaa Y000000
Jtestbench/dout_mc |000000 44014A | 44024834403% Je402a0 Jocanan {a0s4e foo00es [ascesr oosoce fooaoo Jooooon Jeooaos Jeovose foaooao FOO0OFFj<s044 {000000
Jtestbenchferr 1 . L 1 1 - o - - —
/testbench/stall_s -
Jftestbench/wr_s
[testbench/sel_wr H
Jtestbench/ess } {oooooo______|
pestenchvprog p P L[ ([ [ L L [ I L[ {1 |
Jtestbench/sel_addr | {FFFF {ooo0
Jtestbenchfsel_s |{FFEFFE ¥000000
Jtestbenchystate_i [{0 |1 Jo 1 Yo fr Mo 1 ¥o 11 o 1 fo fir [fo fr Yo Y3 (Y4 Y5 Y6 {7 ({8 Y5 {8 o
Jtestbenchystate_r [0 |1 Jo_ i Yo Jr Mo Yi oo i To 2 Yo Yo Yo Yo Yo Yo (Yoo Yo Yo 1> [fo {1 fo_ It
ftestbench/state_s |00 J01 Joo Jor Joo Jor [Joo o1 Yoo fo1 [foo Jo1 Yoo Jor [Joo Jor Joz Yo3 [fo4 Yos fos Jo7 [fos foo Joa foB
ftestbenchytrap i |} {280030 _[}o00000 —
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0 200 ns 400 ns 600 ns 800 ns us 1200 ns 1400
festbencyak p | L [ L\ L [ |1 L [ L@ o WL
PSSV S e 1 e e e e Y [ B O O
PE= et I I 1 e e e I A O O B
PEE= oy T I I T I e e I A T e I 1 O B O A O A
P e VT I Y ) e e e I 6 oy Sy S
[ftestbench/reset_p
ftestbench/pe_in |0030 foo31 Joo32 Joo33 Joo34 ¥o03s foo3s foo37 foo3s Joo3g Joo3a 10038
ftestbench/addr_in |0030 joooo Joosa Yooas Y¥ooac {ooap fooae fooaF Joooo
h/addr_s | {0056 {0055 {0054 [0053 Joos2 }
Jtestbenchy/cidl_in [006EB00000000
Jtestbenchy/cid0_in 0000000000000
Jtestbench/dout_ma |000000 fosesra focanon foooes foosors Jasoran Y450248 | J45034C  Jesosan Joonoan Fesnsse ¥ooonss fasaser Josoocc fooona fonsooo Jfooseoo Joosoee Jooonon YoooorrfFaoooo | Yoooooo
Jftestbench/dout_mb |000000 fosesra Jocanon foooes foosors [asoran Y450248 | J45034C  Jesosan Yoonoun Fesnsse ¥ooonss Jasuser Josoocc Joooona fonsooo Jooseoo Joosoee Jooooon YoooorrfFaoooo | Yoooooo
/testbench/dout_mc |000000 foseso foooo0a fooooo (000008 Jasossn (450248 | J45034C_ J4s0s40 {00004 fasosee {000ss fasosdr foooocc (ooonon Javoano Joosooo Jooooee Joooaon YoooorrFE0000_ | {0DD000
Jftestbench/err L ! ! |_J—|_'—’_1—|_'—|_J—|_} L
Jtestbench/stall_s |
ftestbench/wr_s |
Wsel_wr I
Jtestbench/ess Do]ossaoo (000000 Jooooa] Joocoos +
ftestbench/prog_p Ly r 4y r o r g r
Jtestbench/sel_addr (0000 JFFFF
/testbenchysel_s |000000 JFFFFFF
Nestbench/state_i [§8 [0 f8 Jo (I8 Yo s Yo [f8 Yo Y8 o [f8 Yo Y8 Yo [fs fo fz8 Yo (Y8 Yo f8 Yo [fn» {6 o In
ftestbenchystate_r [{0__ 11 J0 J1_[jo Ji Jo Ji [fo ¥ do 43 [fo_ 3~ o 13" (o ¥3 Yo Y3 [fo ¥3 o {1 [fo_ {1~ fo_ |1
ftestbenchystate_s [{0C foo Joe Jor [Jio J11 Joo Jor [foo fo1r Joo o1 [foo for oo Jor [Joo o1 Joo Joi [Joo jor foo o1 [foo fo1 foo for
/testbench/trap i {C80008
/pc_out
vrvcrrcbeorrcoooebecrocc o borroreecc bocccroec boeccccocebrcecorecbecrreccoc beccocor o becccrccc boccoreccc booecr oo boecrreroe b
1400 ns 1600 ns 18 2us 2200 ns 2400 ns 2600 ns 2800
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Jftestbench/clk

ftestbench/clk_|

Jtestbenchycli_ir

Jtestbench/clk_:

Jtestbench/clk_m

Jtestbench/reset_p

p
I

s

| Y I |y SN (N B
L A [ S S [ B AR W B R IR
1 I o S o B B A A
1 I 1 N o B O B A A
1y Yy oy 8 By By g B

Jtestbenchfpe_in | f003C Y¥oaos fooos foooa Jooos Joooc Jooop Yoooe JooorF foo10 {oo11 Joo12 Joo13 {oo14
Jftestbench/addr_in [0000 ¥ooos Joooo {ooaa YooaB fooac {ooaD Joo4e Joo4aF Yoooo
Jtestbench/addr s
Jtestbench/cidl_in [006ES00000000
/testbench/cid0_in 0000000000000
Jtestbenchfdout_ma |000000 Jaa014A  }44024B  |[44034C  fe0ee fomooas Jasser Joosona Jasser Joosoce Joooono Jooooo Jaanoon Foancee focorso ooorr{440152
Jtestbench/dout_mb (000000 J43014A  144024B | {44034C  jewno [ooooms [asosee [oocoes [4s06sr Joococe Joooaoo Jeoooon Yeaocon Yoaocee fooocoo J000DFFY440152
ftestbench/dout_me |000000 Ja4014A__ 440248 | {44034C Y2440 Yoooons [aatsae Joooose Jasoaer Joovocc Jooooo Joooaoo Joaoooo Yooooee Yocooo {p000FF{440152_ |
ftestoenchierr 1 ! ! ! ! ‘ — b — = -
ftestbench/stall_s
[testbench/wr_s
Jtestbench/sel_wr
Jtestbench/ess
| I U | I I | S S | S T A
Jtestbench/sel_addr |FFFF
Jtestbenchfsel s |FFFFFF
Jtestbenchystate_i [0 {1 fo f1 [fo Y1 Yo Yi o f1 Yo Y1 Yo Y1 fo Y1 J¥o Y1 Yo Y1 Po Y1 o Y1 o i fo A1
ftestbenchystate_r [{0_ |1 [0 |1 o fi Yoo Y1 Yo ¥ fo fim oo Y1~ oo Y2~ Yoo Y2 Yoo Yo~ Yo Y fo {2 [fo- Jz_ Jo_ |1
ftestbench/state_s [fo0 fo1  Joo for [Joo Yor Yoo Jo1 [foo Yo1 Yoo Jo1 [foo Jor Yoo Jor [Joo Jor Yoo Jor [Joo o1 Yoo fo1r [foo fo1r oo fo1
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/testbenchycli_|
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I T
ULy
UL erery
UL rery
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ftestbench/pc_in | J0015 o016 Yoo17 Joo1s foo1s Joo1a Yoo1B Yoo1c fooip foo1E foo1F Joozo Jooz1 Yooz2
Jtestbench/addr_in | 0000 Yoos2 oos3 foos4 Jooss Jooss Yoos7 Yoos8 foos9 foooo
ftestbench/addr_s
ftestbench/cidl_in [006E800000000
ftestbench/cid0_in [0000000000000
Jftestbench/dout_ma | 1440253 440354 | |[ss0e55 Yooooos fasuses Jooooan Jasossy Jooroos Fadorss Fosenon Yasomss Yo00000
Jtestbench/dout_mb | 1440253 |440354 | |4s0ess [oooooa Jasossé Joooosn J4avss7 Jooooon Jadorss foseson Jasdmss J0D0000
ftestbench/dout_mc | (440253 440354 Y0555 [oocoos Tasosse [ooooas J4a06s7 Jooooon Jsaorss fosesoq {sa0sss {00000
ftestbenchyerr L ‘ — ——~ = = = |} L :
ftestbenchystall_s
Jtestbench/wr_s
Jtestbench/sel_wr
/ e
flestbenchjprog p | [ L4 L L1 Lo
[testbench/sel_addr |FFFF
ftestbench/sel s |FFFFFE
Jtestbenchystate_i [f0 {1 fo Y1 [fo Y1 Jo Y1 o f1 fo Y [fo f1 fo fr o fr Yo J1 f¥o fi Jo Y1 o i fo 1
ftestbenchfstate_r [{0_ L 0 It 0 Y2 Yo Yo" Yo Yz Yo 12 [fo 2z o Y2 [fo Jz= Yo Yz o Y1 o Ti~ [¥o~ i~ Jo |1
ftestbenchystate_s [f00 fo1  Joo  Jor [Joo Jo1 Yoo Jo1 [foo Jor oo foi [foo jJo1 foo  Jor [foo Yor Yoo Joi [Joo Jor Yoo fo1 [foo Jo1r oo o1
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APPENDIX B: KDLX INSTRUCTION SET DESCRIPTION

This appendix lists all of the operation codes and functions of the instructions
used in the KDLX. This reference was originally contained in Dr. Kenneth Clark’s dis-
sertation [8]. Some errors were found and have been checked with the author. The func-
tion of the correct operation codes has been proved in the simulations of this thesis. The

operation description is revised in order to give a clear discription of how data transfers.

Some symbols used in this appendix need to be introduced first. Rs1 represents
one of the 15 registers in KDLX. Rs2 represents one of the 15 registers in KDLX as
well. Rs1 and Rs2 could be the same register. Rd represents one of the 15 registers in
KDLX used as a destination register. Immed; represents the most significant bit of a 7-
bit immediate value. [(Immed,)® || Immed] represents an 7-bit immediate value being

sign extended to 16-bit long.

Instruction: ADD (Register Add)
15

23 2019 16 21 8 7 4 |3 0
Opcode: 0x01 Rsl Rd Rs2 Unused
Usage: ADD Rd, Rs1, Rs2
Operation: Rd <— (Rs1+Rs2)

Instruction: ADDI (Add Immediate)

23 20 19 16 [ 15 211 8 7 4 |3 0
Opcode: 0x01 Rsl Rd Rs2 Unused

Usage: ADDI Rd, Rs1, Immed

Operation: Rd « (Rs1+[(Immed;)® || Immed])

Instruction: ADDUI (Add Unsigned Immediate)

23 20 19 16 | 15 12 | 11 8 7 4 3 0

Opcode: 0x21 Rsl Rd Immed

Usage: ADDUI Rd, Rs1, Immed

Operation: Rd « (Rs1+[(0)* || Immed])
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Instruction: AND (Reglster AND)

23

20 19

12 | 11

4 |3

0

Opcode: 0x09

Rsl

Rd

Rs2

Unused

Usage: AND Rd, Rs1, Rs2

Operation: Rd <— (Rs1 (logical-and) Rs2)

Instruction: ANDI (AND Immedlate)

23

20 19

16

12 | 11

4 3

Opcode: 0x29

Rsl1

Rd

Immed

Usage: AND Rd, Rs1, Immed

Operation: Rd < (Rs1 (logical-and) [(Immed,)® || Immed])

Instruction: BEQZ (Branch 1f Equal to Zero)

23

20 19

11

8 7

4 3

Opcode: 0xC1

Rsl1

Unused

Immed

Usage: BEQZ Rs1, Immed

Operation: If Rs1=0, then Program Address < (PC+1+[(Immed,)* || Immed])

Instruction: BNEZ (Branch if Not Equal to Zero)

23

20 19

16

12 | 11

8 7

4 3

Opcode: 0xCO0

Rsl1

Unused

Immed

Usage: BNEZ Rs1, Immed

Operation: If Rs1#0, then Program_Address <— (PC+1+[(Immed;)® || Immed])

Instruction: J (Jump)

23

20 19

16

15

12 11

8 7

Opcode: 0xC8

Immed

Usage: J Immed

Operation: Program Address <— Immed
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Instruction: JAL (Jump and Llnk)

23 2019 211 87 43
Opcode: 0xES8 Immed
Usage: JAL Immed
Operation: Program Addr < Immed;

R15 < Link Program Address

Instruction: JALR (Jump Reglster and Link)

23 20 19 21 8 7 4 3
Opcode: 0x68 Rsl Unused
Usage: JALR Rsl
Operation: Program_Addr < (Rs1);

R15 < Link Program_Address

Instruction: JR (Jump Register)

23 20 19 16 [ 15 211 8 7 4 3
Opcode: 0x48 Rsl Unused

Usage: JALR Rsl
Operation: Program_Address < (Rs1)

Instruction: LHI (Load ngh Immedlate)

23 20 19 211 8 17 4 3
Opcode: 0x08 Unused Rd Immed
Usage: LHI Rd, Immed
Operation: Rd < Immed || (0)*

Instruction: LW (Load Word)

23 20 19 15 211 8 17 4 3
Opcode: 0x44 Rsl Rd Immed

Usage: LW Rd, Rs1(Immed)

Operation: Rd <~ Mem {Rs1+[(Immed-)* || Immed]}
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Instruction: NOP (No Operatio

n)
15

23 2019 16 211 87 43 0
Opcode: 0x00 Unused
Usage: NOP
Operation: None

Instruction: OR (Register OR

23 2019 16 | 15 211 8 |7 4 |3 0
Opcode: 0x2A Rsl Rd Rs2 Unused
Usage: OR Rd, Rsl1, Rs2
Operation: Rd < (Rsl (logical-or) Rs2)

Instruction: ORI (OR Immediate)

23 2019 16 [ 15 211 8 |7 43 0
Opcode: 0x2A Rsl Rd Immed
Usage: ORI Rd, Rs1, Immed
Operation: Rd < (Rs1 (logical-or) Immed)

Instruction: RFE (Return from Exception)

23 2019 1615 211 8 7 4 3 0
Opcode: 0xF8 Unused
Usage: RFE
Operation: Program Address <— Interrupt Address Register

Instruction: SEQ (Set if Equal)

23 2019 16 [ 15 211 8 |7 4 |3 0
Opcode: 0x18 Rsl Rd Rs2 Unused

Usage: SEQ Rd, Rs1, Rs2

Operation: If Rs1=Rs2, then Rd=0x0001 else Rd=0x0000
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Instruction: SEQI (Set Equal Immediate)

23

20 19 15

12 | 11

4 3

Opcode: 0x58

Rsl1

Rd

Immed

Usage: SEQI Rd, Rs1, Immed

Operation: If Rs1=[(Immed-)* || Immed], then Rd=0x0001 else Rd=0x0000

Instruction: SGE (Set if Greater Than or Equal)

23 2019 16 [ 15 8 4 |3 0
Opcode: 0x19 Rsl Rd Rs2 Unused
Usage: SGE Rd, Rs1, Rs2
Operation: If Rs1 > Rs2, then Rd=0x0001 else Rd=0x0000

Instruction: SGEI (Set if Greater Than or Equal Immediate)

23 2019 16 | 15 211 8 43 0
Opcode: 0x59 Rsl Rd Immed

Usage: SGEI Rd, Rs1, Immed

Operation: If Rs1 > [(Immed;)® || Immed], then Rd=0x0001 else Rd=0x0000

Instruction: SGT (Set if Greater Than)

23 20 19 15 211 8 4 |3 0
Opcode: 0x1A Rsl Rd Rs2 Unused
Usage: SGT Rd, Rs1, Rs2
Operation: If Rs1>Rs2, then Rd=0x0001 else Rd=0x0000

Instruction: SGTI (Set if Greater Than Immediate)

23 20 19 16 [ 15 21 8 4 3 0
Opcode: 0x5A Rsl Rd Immed

Usage: SGTI Rd, Rs1, Immed

Operation: If Rs1>[(Immed)* || Immed], then Rd=0x0001 else Rd=0x0000
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Instruction: SLE (Set if Less Than or Equal)

23 2019 21 8 7 4 |3 0
Opcode: 0x1B Rsl Rd Rs2 Unused
Usage: SLE Rd, Rs1, Rs2
Operation: If Rs1 < Rs2, then Rd=0x0001 else Rd=0x0000

Instruction: SLEI (Set if Less Than or Equal Immediate)

23 2019 15 11 8 |7 43 0
Opcode: 0x5B Rsl Rd Immed

Usage: SLEI Rd, Rs1, Immed

Operation: If Rs1 < [(Immed,)® || Immed], then Rd=0x0001 else Rd=0x0000

Instruction: SLL (Shift Loglc Left)

23 20 19 12 | 11 8 7 4 3 0
Opcode: 0x11 Rsl Rd Rs2 Unused
Usage: SLL Rd, Rs1, Rs2
Operation: Rd <— (Rs1) shifted left by Rs2(3:0) bits

Instruction: SLLI (Shift Loglc Left Immediate)

23 20 19 12 | 11 8 7 4 3 0
Opcode: 0x51 Rsl Rd Immed
Usage: SLLI Rd, Rs1, Immed
Operation: Rd < (Rs1) shifted left by Immed(3:0) bits

Instruction: SLT (Set if Less Than)

23 20 19 15 12 | 11 8 7 4 3 0
Opcode: 0x1C Rsl Rd Rs2 Unused

Usage: SLT Rd, Rs1, Rs2

Operation: If Rs1<Rs2, then Rd=0x0001 else Rd=0x0000
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Instruction: SLTI (Set if Less Than Immediate)

23 20 19 16 | 15 12 | 11 8 7

4 3

Opcode: 0x5C Rsl Rd

Immed

Usage: SLTI Rd, Rs1, Immed

Operation: If Rs1<[(Immed)* || Immed], then Rd=0x0001 else Rd=0x0000

Instruction: SNE (Set if Not Equal)

23 2019 211 8 |7 4 |3 0
Opcode: 0x1D Rsl Rd Rs2 Unused
Usage: SNE Rd, Rs1, Rs2
Operation: If Rs1#Rs2, then Rd=0x0001 else Rd=0x0000

Instruction: SNEI (Set if Not Equal Immediate)

23 2019 16 211 8 17 4 3 0
Opcode: 0x58 Rsl Rd Immed

Usage: SNEI Rd, Rs1, Immed

Operation: If Rs1#[(Immed,)® || Immed], then Rd=0x0001 else Rd=0x0000

Instruction: SRA (Shift nght Arlthmetlc)

23 20 19 12 | 11 8 7

4 |3

0

Opcode: 0x13 Rsl Rd

Rs2

Unused

Usage: SRA Rd, Rsl1, Rs2

Operation: Rd < (Rs1) shifted by Rs2(3:0) bits, with Rs1(15) shifted in from

right (for sign extension)

Instruction: SRAI (Shift nght Arithmetic Immediate)

23 20 19 15 12 | 11 8 7

4 3

Opcode: 0x53 Rsl Rd

Immed

Usage: SRAI Rd, Rs1, Immed

Operation: Rd <— (Rs1) shifted by Immed(3:0) bits, with Rs1(15) shifted in from

right (for sign extension)
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Instruction: SRL (Shift nght Loglcal)

23 20 19

12 | 11

Opcode: 0x12

Rsl1

Rd

Rs2

Unused

Usage: SRL Rd, Rsl1, Rs2

Operation: Rd < (Rs1) shifted by Rs2(3:0) bits, with 0’s shifted in from right

Instruction: SRLI (Shift nght Loglcal Immedlate)

23 20 19

11

4 3

Opcode: 0x52

Rsl

Rd

Immed

Usage: SRLI Rd, Rs1, Immed

Operation: Rd < (Rs1) shifted by Immed(3:0) bits, with 0’s shifted in from right

Instruction: SUB (Register Subtract)

23 20 19 16 [ 15 21 4 |3 0
Opcode: 0x03 Rsl Rd Rs2 Unused
Usage: SUB Rd, Rs1, Rs2
Operation: Rd <— (Rs1—Rs2)

Instruction: SUBI (Subtract Immediate)

23 20 19 16 [ 15 21 4 3 0
Opcode: 0x43 Rsl Rd Immed
Usage: SUB Rd, Rs1, Immed
Operation: Rd < (Rs1—[(Immeds)® || Immed])

Instruction: SUBUI (Subtract Un51gned Immediate)

23 20 19 16 21 4 3 0
Opcode: 0x23 Rsl Rd Immed

Usage: SUBUI Rd, Rs1, Immed

Operation: Rd <— (Rs1—

[(0)" || Immed])
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Instruction: SW (Store Word)

23 2019 16 [ 15 21 8 7 43 0
Opcode: 0x45 Rsl Rd Immed
Usage: SW Rs2, Rs1(Immed)
Operation: Mem {Rs1+[(Immed,)® || Immed]} < Rs2

Instruction: TRAP (Software Trap)

23 20 19 16 [ 15 2 11 8 7 4 3 0
Opcode: 0x28 Unused

Usage: Trap Immed
Operation: Program Address <— Immed;

Interrupt_Address Register «<— Link Program_Address

Instruction: XOR (Register Exclusive-OR)

23 20 19 16 [ 15 21 8 7 4 |3 0
Opcode: 0x0B Rsl Rd Rs2 Unused
Usage: XOR Rd, Rs1, Rs2
Operation: Rd <— (Rs1 (exclusive-or) Rs2)

Instruction: XORI (Exclusive-OR Immediate

23 20 19 16 [ 15 21 8 7 4 3 0
Opcode: 0x2B Rsl Rd Immed

Usage: XORI Rd, Rs1, Immed

Operation: Rd < (Rsl1 (exclusive-or) Immed)
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APPENDIX C: VHDL CODE

A. RECONCILER

e R A AR A AR A AR A A A A A KA A A KR A A A A AR A A A A A A I AR A A I A AR A A I A A I A A I AR I AR A AR A Ak A Ak hKk

-— Module: Reconciler

-— Function: The Reconciler is used as an interface between the KDLX
-- and memory. It runs two times faster than the KDLX.

—-— Author: Rong Yuan, TWAF

-— Date: Nov 14, 2003

S SRR I S b I b b I S I S R I S S S e S S e S b S b e S R e S b e S b I S b S b I S b I S b I Sh S S R S 2 R S b S 2 b S

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;

entity rec is Port (
clk r: in std logic;
reset r: in std logic;
rd r: in std logic;
wr r: in std logic;
addrin r: in std logic vector (15 downto 0);
pc_r: in std logic vector (15 downto 0);
datain r: in std logic_vector (23 downto 0);
addrout r: out std logic vector (15 downto 0);
instr data: out std logic vector (23 downto 0);
dataout r: out std logic vector (23 downto O0);
mem data: inout std logic vector (15 downto 0);
wrout r: out std logic;
state r: out std logic vector (3 downto 0)
)

end rec;
architecture fsm of rec is -—- fsm is Finite State Machine
type targetFSM is (State, State(, Statel, ReadState, WriteState);

signal currState, nextState: targetFSM;

begin
nxtStProc: process ( currState, rd r, wr_r)

begin
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case currState is
when State =>
nextState <= State0;
when State(0 =>

if (rd r='0' and wr _r='1l") then -- read from memory
nextState <= ReadState;

elsif (rd r='1l' and wr r='0'") then -- write to memory
nextState <= WriteState;

else
nextState <= Statel;

end if;

when Statel =>
nextState <= State0;
when ReadState =>
nextState <= StateO;
when WriteState =>
nextState <= State0;
end case;

end process nxtStProc;

-- Process to register the current state
curStProc: process (clk r, reset r)

begin
if (reset r ='0') then
currState <= State;
elsif (clk r'event and clk r='1l") then
currState <= nextState;
end if;
end process curStProc;

-—- Process to generate outputs

outConProc: process (currState, wr r, pc r, datain r, addrin r,
mem data)

begin
case currState is
when State => -— generated for reset only
null; -- without this state, state machine

starts at Statel after reset

when StateO => -- doing instruction fetch

state r <= "0000";

wrout r <= wr r;

addrout r <= pc r; -- sending pc to memory

instr data <= datain r; -- memory sends instruction
to KDLX

dataout r <= (others => 'Z");

mem data <= (others => 'Z');
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when Statel => -- exactly the same as State0
-- for keeping current state
state r <= "0001";
wrout r <= wr r;
addrout r <= pc r;
instr data <= datain r;
dataout r <= (others => 'Z');

mem data <= (others => 'Z');

when ReadState => -— When KDLX reads data from memory
state r <= "0010";
wrout r <= wr r; -- write signal is one
addrout r <= addrin r; -- sending address to memory

mem data <= datain r (15 downto 0);
-- memory sends data to KDLX

dataout r <= (others => 'Z2'"); -- block input to memory
when WriteState => -— When KDLX writes data to memory

state r <= "0011";

wrout r <= wr r; -- write signal is zero

addrout r <= addrin r; -- sending address to memory

dataout r (15 downto 0) <= mem data;
-— KDLX sends data to memory
dataout r (23 downto 16) <= "00000000";
-- sign extension data
end case;

end process outConProc;

end fsm;
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B. INTERRUPT
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—-- Module: Interrupt

-- Function: The Interrupt is used to switch to ISR when err occurs.
-- It runs in double speed and has the same time constraints with
-- Reconciler. TRAP to other instruction set and jump back when done.

-- Notation: This Interrupt is revised to work with TMRA in this design
-- only. This is the final version before ESSD is generated. Only two
-—- NOPs after TRAP.

—-— Author: Rong Yuan, TWAF

-- Date: Nov 17, 2003

S SRR I I b I S b I b b I S R S S S S e I S e S S e S b S b e S IR e S b I S S S b I S b I Sb b I dh S S I S 2b R S b S db S i

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;

entity Interrupt is Port (
rfe i: in std logic_vector (23 downto 0);
pc_in: in std logic vector (15 downto 0);
err: in std logic;
reset i: in std logic;
clk i: in std logic;

pc_out: out std logic vector (15 downto 0);
sel i: out std logic_vector (23 downto 0);
trap i: out std logic vector (23 downto 0);
state i: out std logic vector (3 downto 0)
);

end Interrupt;

architecture fsm of Interrupt is

type targetFsSM is (State, State0 A, State0 B, TrapState A, TrapState B,
NopStateO A, NopStateO B, NopStatel A, NopStatel B,
WaitState A, WaitState B, BackState A, BackState B);

signal pc latch: std logic vector (15 downto 0);

signal new _instr: std logic vector (23 downto 0);

signal currState, nextState: targetFSM;

begin

nxtStProc: process ( currState, err, rfe i)

begin
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case currState is

when State =>
nextState <= State0 A;

when State0 A =>
nextState <= State( B;

when State0 B =>

if (err='1l') then

nextState <= TrapState A;
else

nextState <= State( A;
end if;

when TrapState A =>
nextState <= TrapState B;

when TrapState B =>
nextState <= NopStatelO A;

when NopStateO A =>
nextState <= NopStatel B;

when NopState0 B =>
nextState <= NopStatel A;

when NopStatel A =>
nextState <= NopStatel B;

when NopStatel B =>
nextState <= WaitState A;

when WaitState A =>
nextState <= WaitState B;

when WaitState B =>

if (rfe i(23 downto 16)="11111000") then -- check F80000
nextState <= BackState A;
else
nextState <= WaitState A; -- stay if not seeing F80000
end if;

when BackState A =>
nextState <= BackState B;

when BackState B =>
nextState <= State0 A;

end case;
end process nxtStProc;
-- Process to register the current state

curStProc: process (clk i, reset 1)
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begin

if

(reset i ='0") then
currState <= State;

elsif (clk i'event and clk i="'1") then

currState <= nextState;

end if;

end process curStProc;

-— Process to generate outputs

outConProc: process (currState, pc_in)

begin

case currState is

when

when

when

when

when

when

when

when

State =>
null;

State0 A =>

state i <= "0000";

trap i <= (others =>'7Z');

sel 1 <= "111111111111111111111111";
pc_out <= (others => 'Z");

State0 B =>

state i <= "0001";

trap i <= (others =>'Z"');

sel i <= "111111111111111111111111";
pc_out <= (others => 'Z'");

TrapState A =>

state i <= "0010";

sel 1 <= "000000000000000000000000";
trap i <= "001010000000000000110000";

-—-allow TRAP pass to KDLX

--TRAP instr 2800030

pc_latch <= pc_in; --latch pc for new instruction

TrapState B =>

state i <= "0011";

sel i <= "000000000000000000000000";
pc_out <= pc latch;

NopState0 A =>
state i <= "0100";

trap i <= "000000000000000000000000";

sel i <= "000000000000000000000000";
pc_out <= (others => 'Z'");

NopState0 B =>

state i <= "0101";

sel 1 <= "000000000000000000000000";
pc_out <= (others => 'Z");

NopStatel A =>
state i <= "0110";
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trap i <= "000000000000000000000000";

sel 1 <= "000000000000000000000000";
pc_out <= (others => 'Z'");

-—-construct new JUMP instr

new instr (23 downto 16) <= "11001000";

new instr (15 downto 0) <= pc latch;

when NopStatel B =>
state i <= "0111";
sel i <= "000000000000000000000000";
pc_out <= (others => 'Z'");

when WaitState A =>
state i <= "1000";
trap i <= (others => 'Z2");
sel 1 <= "111111111111111111111111";
pc_out <= (others => 'Z'");

when WaitState B =>
state i <= "1001";
trap i <= (others => 'Z2");
sel i <= "111111111111111111111111";
pc_out <= (others => 'Z'");

when BackState A =>
state i <= "1010";
trap i1 <= new instr;
sel i <= "000000000000000000000000";
pc_out <= (others => 'Z'");

when BackState B =>
state i <= "1011";

sel i <= "000000000000000000000000";

pc_out <= (others => 'Z");
end case;

end process outConProc;
end fsm;
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C. RECONCILER FOR THE FULL DESIGN
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-— Module: Reconciler

—-— Function: The Reconciler is used as an interface between TMRA and

-- memory. It runs in double speed. Act as instruction memory in the
-- first half KDLX clock and as data memory in the second half KDLX
-- clock.

-— Notation: This Reconciler is revised to work with the TMRA in this
-- design only. Data buses are triplicated.

—-— Author: Rong Yuan, TWAF

-— Date: Nov 14, 2003

S SRR I I b I b b I b I S R S S S dh e S S e S S S b S b e S b e S b I S b I S b I S b I S b I dh S S R I 2 R S b S db S i

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;

entity rec2 is Port (
clk r: in std logic;
reset r: in std logic;
rd r: in std logic;
wr_r: in std logic;
addrin r: in std logic vector (15 downto 0);
pc r: in std logic vector (15 downto O0);
datain a: in std logic_vector (23 downto 0);
datain b: in std logic_vector (23 downto 0);
datain c: in std logic_vector (23 downto 0);

addrout r: out std logic vector (15 downto 0);
instr data a: out std logic vector (23 downto 0);
instr data b: out std logic vector (23 downto 0);
instr data c: out std logic vector (23 downto 0);
dataout r: out std logic vector (23 downto 0);
mem data a: out std logic vector (15 downto 0);
-—- data from mem to KDLX
mem _data b: out std logic vector (15 downto 0);
mem _data c: out std logic vector (15 downto 0);
mem data wr: in std logic vector (15 downto 0);
-— data from KDLX to mem
wrout r: out std logic;
state r: out std logic vector (3 downto 0)
);

end rec2;
architecture fsm of rec2 is -— fsm is Finite State Machine

type targetFSM is (State, State(O, Statel, ReadState, WriteState);
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signal currState, nextState: targetFSM;
begin

nxtStProc: process ( currState, rd r, wr_r)
begin

case currState is

when State =>
nextState <= Statel;

when State(0 =>

if (rd r='0' and wr r='1l") then -- read from memory
nextState <= ReadState;

elsif (rd r='1l' and wr r='0") then -- write to memory
nextState <= WriteState;

else
nextState <= Statel;

end if;

when Statel =>
nextState <= State0;

when ReadState =>
nextState <= Statel;

when WriteState =>
nextState <= State0;

end case;
end process nxtStProc;
-- Process to register the current state

curStProc: process (clk r, reset r)

begin
if (reset r ='0') then
currState <= State;
elsif (clk r'event and clk r='1l") then
currState <= nextState;
end if;

end process curStProc;

-—- Process to generate outputs

outConProc: process (currState, wr r, pc_r, datain a, datain b,
datain ¢, addrin r, mem data wr)

begin

case currState is
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-- without this state, state machine starts at Statel after reset

when State => -- generated for reset only
null;
when State(0 => -- doing instruction fetch

state r <= "0000";
wrout r <= wr r;
addrout r <= pc r; -- sending pc to memory

if (datain_a (23 downto 16)="11111000") then
instr data a <= "000000000000000000000000";
instr data b <= "000000000000000000000000";
instr data c <= "000000000000000000000000";
else

instr data a <= datain_a;-- memory sends instruction to KDLX

instr data b <= datain b;
instr data c <= datain c;
end 1if;

dataout r <= (others => 'Z");
] ]

mem data a <= (others => 'Z');
mem data b <= (others => 'Z'");
mem data ¢ <= (others => 'Z'");
when Statel => -- exactly the same as State0

-- for keeping current state
state r <= "0001";
wrout r <= wr r;
addrout r <= pc r;

if (datain a (23 downto 16)="11111000") then
instr data a <= "000000000000000000000000";
instr data b <= "000000000000000000000000";
instr data ¢ <= "000000000000000000000000";

else -- memory sends instruction to KDLX

instr data a <= datain a;

instr data b <= datain b;

instr data c <= datain c;
end if;

dataout r <= (others => 'Z');
] ]

mem data a <= (others => 'Z'");
mem data b <= (others => 'Z'");
mem data c <= (others => 'Z'");
when ReadState => -— When KDLX reads data from memory
state r <= "0010";
wrout r <= wr_r; -- write signal is one
addrout r <= addrin r; -- sending address to memory

-- memory sends data to KDLX

mem data a <= datain_a (15 downto 0);
mem data b <= datain b (15 downto 0);
mem _data c <= datain c (15 downto 0);

dataout r <= (others => 'Z'); -- block input to memory

192



when

WriteState => -— When KDLX writes data to memory
state r <= "0011";

wrout r <= wr_r; -- write signal is zero

addrout r <= addrin r; -- sending address to memory

-- KDLX sends data to memory
dataout r (15 downto 0) <= mem data wr;
dataout r (23 downto 16) <= "00000000"; -- sign extension data

end case;

end process outConProc;

end fsm;
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D. ESSD
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-—- Module: Error Syndrome Storage Device (ESSD)

-- Function: The ESSD is used to store error syndrome when err occurs.
-- It runs in double speed and has the same time constraints with
-- Reconciler. Stall KDLX at the beginning of ISR.

-- Notation: This ESSD works with the TMRA in this design only. This
-- 1is the final version.

-—- Author: Rong Yuan, TWAF

-- Date: Nov 21, 2003

e AR AR A A A A A A A R A AR AR A A AR A AR AR A A AR A AR AR A AR A AR A AR A AR A AR A A A A Ak A A kA Ak Ak kA Ak, K

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;

entity essd is Port (
addr in: in std logic vector (15 downto 0);
pc_in: in std logic vector (15 downto 0);
cidl in: in std logic_vector (50 downto 0);
cid0_in: in std logic_vector (50 downto 0);
err: in std logic;
reset s: in std logic;
clk s: in std logic;

stall s: out std logic;
wr_s: out std logic;
sel wr: out std logic;
addr_s: out std logic vector (15 downto 0);
sel addr: out std logic vector (15 downto 0);
sel s: out std logic_vector (23 downto 0);
ess: out std logic vector (23 downto 0);
state s: out std logic vector (4 downto 0)
);

end essd;

architecture fsm of essd is

type targetFSM is (State, StateO A, State0 B, LatchState A,
LatchState B, NopStateO A, NopStateO B, NopStatel A,
NopStatel B, StallState, StoreState( A,
StoreState0 B, StoreState0 C, StoreStatel A,
StoreStatel B, StoreStatel C, StoreState addr,
StoreState pc, BackState);

signal pc latch, addr latch: std logic vector (15 downto 0);
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signal

signal
signal

begin
nxtStPr
begin
case cu

when
when
when
if
el

en

when

when

when

when

when

when

when

when

when

when

cid0_latchA, cidO_latchB, cidO0_latchC, cidl latchA,

cidl latchC: std logic vector (23 downto 0);
counter: std logic vector (15 downto 0);
currState, nextState: targetFSM;

oc: process ( currState, err)

rrState is

State =>
nextState <= State0 A;

State0 A =>
nextState <= State( B;

State0 B =>

(err="1") then

nextState <= LatchState A;
se

nextState <= State( A;
d if;

Latchstate A =>
nextState <= LatchState B;

LatchState B =>
nextState <= NopStateO A;

NopStateO A =>
nextState <= NopStatel B;

NopState0 B =>
nextState <= NopStatel A;

NopStatel A =>
nextState <= NopStatel B;

NopStatel B =>
nextState <= StallState;

StallState =>
nextState <= StoreStatel A;

StoreState0 A =>
nextState <= StoreStatel B;

StoreState0 B =>
nextState <= StoreStatel0 C;

StoreState0 C =>
nextState <= StoreStatel A;
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when

when

when

when

when

when

StoreStatel A =>
nextState <= StoreStatel B;

StoreStatel B =>
nextState <= StoreStatel C;

StoreStatel C =>
nextState <= StoreState addr;

StoreState addr =>
nextState <= StoreState pc;

StoreState pc =>

nextState <= BackState;
BackState =>
nextState <= State0 A;

end case;

end process nxtStProc;

-- Process to register the current state

curStProc:

begin

if

elsif

process (clk s, reset s)

(reset s ='0"') then

currState <= State;

(clk s'event and clk s='1")
<= nextState;

then
currState

end if;

end process curStProc;

begin
counter

Process
outConProc:

to generate outputs
process (currState, pciin,

<= "00000000O01011001";

case currState is

when

when

when

State =>
null;
State0 A =>

state s <= "00000";
ess <= (others =>'72");

sel s <= "111111111111111111111111";

sel wr <= '1";
sel addr <= "1111111111111111";
stall s <= '1"';

State0 B =>
state s <= "00001";
ess <= (others =>'72");
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sel s <= "111111111111111111111111";
sel wr <= '1";

sel addr <= "1111111111111111";
stall s <= '1"';

when LatchState A => -—-latch all data here
state s <= "00010";
sel s <= "111111111111111111111111";
sel wr <= '1";
sel addr <= "1111111111111111";
stall s <= '1"';
pc_latch <= pc_in;
addr latch <= addr in;

--seperate input data

cidl latchC <= cidl _in(23 downto 0);

cidl latchB <= cidl in(47 downto 24);

cidl latchA (2 downto 0) <= cidl in (50 downto 48);
cidl latchA (23 downto 3) <= "000000000000000000000";
cid0 latchC <= cid0_in (23 downto 0);

cid0_latchB <= cid0_in (47 downto 24);

cid0 latchA (2 downto 0) <= cid0 in (50 downto 48);
cid0 latchA (23 downto 3) <= "000000000000000000000";

when LatchState B =>
state s <= "00011";
sel s <= "111111111111111111111111";
sel wr <= '1"';
sel addr <= "1111111111111111";
stall s <= '1"';

when NopState0 A =>
state s <= "00100";
sel s <= "111111111111111111111111";
sel wr <= '1'";
sel addr <= "1111111111111111";
stall s <= '1"';

when NopStateO B =>
state s <= "00101";
sel s <= "111111111111111111111111";
sel wr <= '1";
sel addr <= "1111111111111111";
stall s <= '1"';

when NopStatel A =>
state s <= "00110";
sel s <= "111111111111111111111111";
sel wr <= '1'";
sel addr <= "1111111111111111";
stall s <= '1"';

when NopStatel B =>
state s <= "00111";
sel s <= "111111111111111111111111";
sel wr <= '1";
sel addr <= "1111111111111111";
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when

when

when

when

when

when

stall s <= '1"';

Stallstate => --stall KDLX
state s <= "01000";

sel s <= "111111111111111111111111";
sel wr <= '1";

sel addr <= "1111111111111111";
stall s <= '0"';

StoreState0 A => —--store cid0
state s <= "01001";

sel s <= "000000000000000000000000";
sel wr <= '0';

sel addr <= "0000000000000000";
stall s <= '0"';

addr_s <= counter;

wr s <= '0";

ess <= cid0 latchC;

counter <= counter-1;

StoreState0 B =>

state s <= "01010";

sel s <= "000000000000000000000000";
sel wr <= '0';

sel addr <= "0000000000000000";
stall s <= '0';

addr s <= counter;

wr s <= '0';

ess <= cid0_ latchB;

counter <= counter-1;

StoreState0 C =>

state s <= "01011";

sel s <= "000000000000000000000000™";
sel wr <= '0';

sel addr <= "0000000000000000";
stall s <= '0';

addr s <= counter;

wr s <= '0';

ess <= cidO_latchA;

counter <= counter-1;

StoreStatel A => --store cidl
state s <= "01100";

sel s <= "000000000000000000000000";
sel wr <= '0'";

sel addr <= "0000000000000000";
stall s <= '0"';

addr_s <= counter;

wr s <= '0";

ess <= cidl latchC;

counter <= counter-1;

StoreStatel B =>

state s <= "01101";

sel s <= "000000000000000000000000";
sel wr <= '0';
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sel addr <= "0000000000000000";
stall s <= '0"';

addr s <= counter;

wr s <= '0';

ess <= cidl latchB;

counter <= counter-1;

when StoreStatel C =>
state s <= "01110";
sel s <= "000000000000000000000000";
sel wr <= '0';
sel addr <= "0000000000000000";
stall s <= '0"';
addr s <= counter;
wr s <= '0";
ess <= cidl latchA;
counter <= counter-1;

when StoreState addr => -—-store mem addr
state s <= "01111";

sel s <= "000000000000000000000000";
sel wr <= '0';
sel addr <= "0000000000000000";
stall s <= '0"';
addr_s <= counter;
wr s <= '0";
ess (15 downto 0) <= addr latch;
ess (23 downto 16) <= "00000000";
counter <= counter-1;

when StoreState pc => --store pc
state s <= "10000";
sel s <= "000000000000000000000000™;
sel wr <= '0';
sel addr <= "0000000000000000";
stall s <= '0"';
addr s <= counter;
wr s <= '0';
ess (15 downto 0) <= pc latch;
ess (23 downto 16) <= "00000000";
counter <= counter-1;

when BackState => --release KDLX
state s <= "10001";
sel s <= "111111111111111111111111";
sel wr <= '1";
sel addr <= "1111111111111111";
stall s <= '1"';
addr_s <= (others =>'7Z");
wr s <= 'l"';
ess <= (others =>'72");

end case;

end process outConProc;
end fsm;
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E. KDLX

The KDLX is a 16-bit RISC soft-core processor. It is 5-stage pipelined including
fetch, decode, execute, memory, and write back. The KDLX is coded by Dr. Kenneth

Clark and following is the construction of the source core in ISE software.

- [W] dix_testbench (dix_out.vhd)
= [W] i [dl. vhd)
=W core [core vhd)
- @ alu [alu. vhd)
-1 [W] adder [adder.vhd)
[¥] a022 (4022 vhd)
[+] alu_logic (alu_logic.vhd)
- m log_barrel [log_barrel.vhd]
@ word_musd [word_nmusd. vhd]
E word_musd [ward_musd. vhd]
=1 [V word_set (word_set.vhd)
@ zero_test [zero_test vhd)
- @ pc_control [pe_contral.whd)
E increment [increment. vhd)
[+) word_rmus3 [word_mus3.vhd)
- m word_req_single [word_reg_zingle.vhd]
@ gcan_req [scan_req.vhd]
- @ pipeling [pipeline. vhd]
=1 [W twehse_bit_req_single [bwelve_bit_reg_single.vhd)
@ goan_req [gcan_req.vhd]
- m bwenty_faur_bit_req_single [twenty_four_bit_reg_single. vhd]
= E bwehve_bit_req_single [bwelve_bit_reg_single. whd]
[¥] scan_reg [scan_reg.vhd)
- @ regfile [regfile. vhd)
E dest_decoder [Dest_Decoder.vhd)
E word_mu=16 [word_mus1E.vhd]
=1 [W] word_reg_single [word_req_single. vhd)
@ goan_req [gcan_req.vhd]
rw_control [ra_contral.vhd]
word_mus3 [word_mux3.vhd]
wiord_musd [word_musd vhd)
word_req_single (word_reg_zingle. vhd]
E gcan_req [scan_reqg.vhd]
@ zero_test [zero_test vhd)
[+¥] io_pads [10_Pads.vhd)

EEEE
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1. alu.vhd

LIBRARY IEEE;

USE IEEE.std logic 1164.all;

USE IEEE.std logic _arith.all;
USE IEEE.std logic unsigned.all;

— kKR KX kX% adder model * k Xk Xk K
-- external ports
ENTITY adder IS PORT (
A : IN std logic_vector (15 downto 0);
B: IN std logic_vector (15 downto O0);
alu opl : IN std logic;
alu op3 : IN std logic;
alu op4 : IN std logic;
Out word : OUT std logic_vector (15 downto 0)
)
END adder;

-- internal structure
ARCHITECTURE rtl OF adder IS

—-— COMPONENTS

COMPONENT AO22
PORT (
A IN std logic;
B : IN std logic;
C : IN std logic;
D : IN std logic;
\Out\ : OUT std logic
);
END COMPONENT;

SIGNAL Vvdd : std logic;

SIGNAL subtract : std logic;

—-— INSTANCES

BEGIN

vdd <= '1';

AO22 1 : AO22 PORT MAP (
A => Vdd,

B => alu opl,

C => alu op4,

D => alu op3,

\Out\ => subtract

);

process (A, B, subtract)
begin
if (subtract = '1l') then
out word <= A-B;
else out word <= A+B;
end if;
end process;
END rtl;
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2. alu.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—— **%**x g1y model ****x%

-— external ports

ENTITY alu IS PORT (
A : IN std logic_vector (15 downto 0);
alu op : IN std logic_vector (4 downto 0);
alu out : OUT std logic_vector (15 downto 0);
B : IN std logic vector (15 downto 0)

)

END alu;

-- internal structure
ARCHITECTURE structural OF alu IS

—-— COMPONENTS

COMPONENT adder
PORT (
A : IN std logic vector (15 downto 0);
B : IN std logic vector (15 downto 0);
alu opl : IN std logic;
alu op3 : IN std logic;
alu op4 : IN std logic;
Out word : OUT std logic vector (15 downto 0)
);
END COMPONENT;

COMPONENT alu logic
PORT (
A : IN std logic_vector (15 downto 0);
B : IN std logic vector (15 downto 0);
Func : IN std logic_vector (1 downto 0);
logic _out : OUT std logic_vector (15 downto 0)
) ;
END COMPONENT;

COMPONENT log barrel
PORT (
ar or log : IN std logic;
In Word : IN std logic vector (15 downto 0);
1 or r : IN std logic;
Out word : OUT std logic_vector (15 downto 0);
Shift : IN std logic_vector (3 downto 0)
)
END COMPONENT;

COMPONENT word mux4
PORT (
A IN std logic vector (15 downto
B : IN std logic vector (15 downto
C : IN std logic vector (15 downto
D
S

O O O o
O — — — —
Ne Ne N

: IN std logic_vector (15 downto
el : IN std logic_vector (1 downto

~ ~.
~e
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Out word : OUT std logic vector (15 downto 0)
)
END COMPONENT;

COMPONENT word set

PORT (
In word : IN std logic vector (15 downto 0);
set op : IN std logic vector (2 downto O0);
set out : OUT std logic

)7

END COMPONENT;

-— SIGNALS

SIGNAL set out : std logic vector (15 downto 0);

SIGNAL log barrel out : std logic vector (15 downto 0);
SIGNAL logic_out : std logic vector (15 downto 0);
SIGNAL Adder Out : std logic vector (15 downto 0);

—-— INSTANCES
BEGIN
set out (15 downto 1) <= "000000000000000";
halfword adder 1 : adder PORT MAP (
A => A,
alu opl => alu op(l),
alu op3 => alu op(3),
alu op4 => alu op (4),
B => B,
Out word => Adder Out
)7
halfword alu logic 1 : alu logic PORT MAP (
A => A,
B => B,
Func => alu op(l downto 0),
logic out => logic out
)7
halfword log barrel 1 : log barrel PORT MAP (
ar or log => alu op(0),
In word => A,
1 or r => alu op(l),
Out word => log barrel out,
Shift => B(3 downto 0)
)i
halfword mux4 1 : word mux4 PORT MAP (
A => Adder Out,
B => logic out,
C => log barrel out,
D => set out,
Out _word => alu out,
Sel => alu op (4 downto 3)
)
halfword set 1 : word set PORT MAP (
In word => Adder Out,
set op => alu op(2 downto 0),
set _out => set out(0)
)
END structural;
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3. alu_logic.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—— ***** glu logic model *****
-- external ports
ENTITY alu logic IS PORT (
A: IN std logic vector (15 downto 0);
B : IN std logic _vector (15 downto 0);
Func: IN std logic vector(l downto 0);
logic _out : OUT std logic vector (15 downto 0)
) ;
END alu logic;

-- internal structure
ARCHITECTURE rtl OF alu_logic IS

BEGIN

process (A,B, func)

begin
case func is
when "00" => logic out <= A;
when "01" => logic_out <= (A and B);
when "10" => logic_out <= (A or B);
when others => logic_out <= (A xor B);
end case;

end process;

END rtl;

4. A0O22.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

entity AO022 is port (
A, B, C, D: IN std logic;
\Out\ : OUT std logic);
end A022;

architecture behavioral of A022 is
begin

\Out\ <= (A and B) or (C and D);
end behavioral;
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5. core.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;
USE IEEE.std logic _arith.all;
—— **%** core model **Fx*X
-- external ports
ENTITY core IS PORT (
Addr_Int : OUT std logic vector (15 downto 0);
Clock _in : IN std logic;
Input Data : IN std logic vector (15 downto 0);
Output Data : Out std logic vector (15 downto 0);
Instr : IN std logic vector (23 downto 0);
PC : OUT std logic_ vector (15 downto 0);
Prog Rd : OUT std logic;
Rd : OUT std logic;
Resetn : IN std logic;
Stalln : IN std logic;
Wr : OUT std logic
);

END core;

-—- internal structure
ARCHITECTURE structural OF core IS

—-— COMPONENTS

COMPONENT alu

PORT (
A : IN std logic_vector (15 downto 0);
alu op : IN std logic_vector (4 downto 0);
alu out : OUT std logic_vector (15 downto 0);
B : IN std logic vector (15 downto 0)

);

END COMPONENT;

COMPONENT word mux3

PORT (
A : IN std logic_vector (15 downto 0);
B : IN std logic_vector (15 downto 0);
C : IN std logic vector (15 downto 0);
Out word : OUT std logic vector (15 downto 0);
Sel : IN std logic_vector (1l downto 0)

) ;

END COMPONENT;

COMPONENT word mux4
PORT (

’

IN std logic_vector (15 downto 0)
) i
)

(
IN std logic_vector (15 downto
: IN std logic_vector (15 downto
: IN std logic vector (15 downto 0);
Out word : OUT std logic vector (15 downto 0);
Sel : IN std logic_vector (1l downto 0)

[eoNeNe]

’

o Qw @

);
END COMPONENT;
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COMPONENT regfile

PORT (
A : OUT std logic vector (15 downto O0);
B : OUT std logic vector (15 downto 0);
clock : IN std logic;
Data In : IN std logic vector (15 downto 0);
Dest : IN std logic vector (3 downto 0);

stalln: IN std logic;

resetn : IN std logic;
RSone : IN std logic vector (3 downto 0);
RStwo : IN std logic vector (3 downto 0);
scan _data in : IN std logic;
scan_enable : IN std logic;
wb _enable : IN std logic

)i

END COMPONENT;

COMPONENT word reg single
PORT (
Clock : IN std logic;
Data In : IN std logic vector (15 downto 0);
Data out : OUT std logic vector (15 downto 0);
Enable : IN std logic;
Resetn : IN std logic;
Scan_Data In : IN std logic;
Scan_Enable : IN std logic
)
END COMPONENT;

COMPONENT pc_control
PORT (
ALU Out : IN std logic vector (15 downto 0);
Clock : IN std logic;
D2 Inc_PC : OUT std logic vector (15 downto 0);
D Link PC : OUT std logic vector (15 downto 0);
IAR Enable : IN std logic;
PC : OUT std logic vector (15 downto 0);
PC Sel : IN std logic vector(l downto 0);
Resetn : IN std logic;
Scan_Data In : IN std logic;
Scan_Data Out : OUT std logic;
Scan Enable : IN std logic;
Stalln : IN std logic
)
END COMPONENT;

COMPONENT pipeline

PORT (

alu op : OUT std logic vector (4 downto 0);
A Mux : OUT std logic vector (1l downto 0);
B Mux : OUT std logic vector (l downto 0);
Clock : IN std logic;
Data In : IN std logic vector (23 downto 0);
Dest : OUT std logic vector (3 downto 0);
Immed : OUT std logic vector (15 downto 0);
PC _Sel : OUT std logic_vector (1l downto 0);
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)7

rd enable : OUT std logic;

Reg In Sel : OUT std logic_vector(l downto 0);
Resetn : IN std logic;

RSone : OUT std logic vector (3 downto 0);
RStwo : OUT std logic vector (3 downto 0);
Scan_Data In : IN std logic;

Scan_Enable : IN std logic;

Stalln : IN std logic;

wb enable : OUT std logic;

scan_out : OUT std logic;

IAR Enable : OUT std logic;

wr_enable : OUT std logic;

zero flag : IN std logic

END COMPONENT;

COMPONENT rw_control

PORT (
Clock

);

IN std logic;

Prog Rd : OUT std logic;
Rd : OUT std logic;

rd enable : IN std logic;
resetn : IN std logic;
stalln : IN std logic;

Wr : OUT std logic;
wr_enable : IN std logic

END COMPONENT;

COMPONENT zero test

PORT (

)7

In word : IN std logic vector (15 downto 0);
zero flag : OUT std logic

END COMPONENT;

-— SIGNALS

SIGNAL wr enable : std logic;

SIGNAL zero flag : std logic;

SIGNAL IAR Enable : std logic;

SIGNAL wb enable : std logic;

SIGNAL pipeline scan out : std logic;

SIGNAL Dest : std logic vector (3 downto 0);
SIGNAL A : std logic_vector (15 downto 0);

SIGNAL D2 Inc PC : std logic vector (15 downto 0);
SIGNAL Immed : std logic vector (15 downto 0);
SIGNAL D ALU Out : std logic vector (15 downto 0);
SIGNAL D Link PC : std logic vector (15 downto 0);
SIGNAL Reg In Sel : std logic_vector(l downto 0);
SIGNAL ALU A : std logic vector (15 downto 0);
SIGNAL ALU Out : std logic vector (15 downto 0);
SIGNAL ALU B : std logic vector (15 downto 0);
SIGNAL Gnd : std logic;

SIGNAL B : std logic_vector (15 downto 0);

SIGNAL

LD Memory In : std logic vector (15 downto 0);
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SIGNAL output _en n : std logic;

SIGNAL rd enable : std logic;

SIGNAL pc control scan out : std logic;

SIGNAL Buf Stalln : std logic;

SIGNAL Buf resetn : std logic;

SIGNAL Clock : std logic;

SIGNAL Buf Addr Int : std logic vector (15 downto 0);

SIGNAL Shift En : std logic;

SIGNAL alu op : std logic vector (4 downto 0);

SIGNAL Buf Scan Data Out : std logic;

SIGNAL A Mux : std logic_vector (l downto

SIGNAL B Mux : std logic vector (1l downto

SIGNAL RSone : std logic vector (3 downto

SIGNAL RStwo : std logic vector (3 downto 0);

SIGNAL PC Sel : std logic vector(l downto 0);

SIGNAL Data Out : std logic_vector (15 downto 0);

SIGNAL Regfile In : std logic_vector (15 downto 0);

SIGNAL zero byte : std logic vector (7 downto O0);

SIGNAL Data In : std logic vector (15 downto 0);

SIGNAL sign ext immed : std logic vector (15 downto 0);

SIGNAL scan data in : std logic;

—-— INSTANCES

BEGIN

clock <= clock in;

shift en <= '0';

scan_data in <= '0';

Addr Int <= Buf Addr Int;

zero byte <= "00000000";

sign ext immed (15 downto 8) <= Immed(7) & Immed(7) & Immed(7)
Immed(7) & Immed(7) & Immed(7) & Immed(7) & Immed(7);

sign_ext immed (7 downto 0) <= Immed(7 downto 0);

Wr <= output en n;

Output Data <= Data Out;

) ;
);
).

’

[oNeoNeNe]

Word Reg 1 : word reg single PORT MAP (
Clock => Clock,
Data In => B,
Data out => Data Out,
Enable => Stalln,
Resetn => Resetn,
Scan _Data In => pc _control scan_ out,
Scan_Enable => Shift FEn
)7

Word Reg 2 : word reg single PORT MAP (
Clock => Clock,
Data In => Input Data,
Data out => LD Memory In,
Enable => Stalln,
Resetn => Resetn,
Scan_Data In => Data Out(15),
Scan_Enable => Shift FEn
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alu 1 : alu PORT MAP (
A => ALU A,
alu op => alu op,
alu out => ALU Out,
B => ALU B
)
word mux3 1 : word mux3 PORT MAP (
A => D ALU Out,
B => LD Memory In,
C => D Link PC,
Out _word => Regfile In,
Sel => Reg In Sel
)
word mux3 2 : word mux3 PORT MAP (
A => B,
B(7 downto 0) => Immed(7 downto 0),
B(15 downto 8) => zero byte,
C => sign ext immed,
Out word => ALU B,
Sel => B Mux
)
word mux4 1 : word mux4 PORT MAP (
A => A,
B => D2 Inc PC,
C(7 downto 0) => zero byte,
C(15 downto 8) => Immed(7 downto 0),
D => Immed (15 downto 0),
Out word => ALU A,
Sel => A Mux
) i
regfile 1 : regfile PORT MAP (
A => A,
B => B,
clock => Clock,
Data In => regfile in,
Dest => Dest,
stalln => stalln,
resetn => resetn,
RSone => RSone,
RStwo => RStwo,
scan_data in => pipeline scan_out,
scan_enable => Shift En,
wb enable => wb enable
)
word reg single 3 : word reg single PORT
Clock => Clock,
Data In => Buf Addr Int,
Data out => D ALU Out,
Enable => Stalln,
Resetn => resetn,
Scan Data In => Buf Addr Int(15),
Scan_Enable => Shift FEn
)
word reg single 4 : word reg single PORT
Clock => Clock,
Data In => ALU Out,
Data out => Buf Addr Int,
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Enable => Stalln,
Resetn => resetn,
Scan Data In => B(15),
Scan Enable => Shift En

)7

pc_control 1 : pc control PORT MAP (
ALU Out => ALU Out,
Clock => Clock,
D2 Inc PC => D2 Inc PC,
D Link PC => D Link PC,
IAR Enable => IAR Enable,
PC => PC,
PC Sel => PC Sel,
Resetn => resetn,
Scan Data In => D ALU Out(15),
Scan Data Out => pc control scan out,
Scan_Enable => Shift En,
Stalln => Stalln

)

pipeline 1 : pipeline PORT MAP (
alu op => alu op,
A Mux => A Mux,
B Mux => B Mux,
Clock => Clock,
Data In => Instr,
Dest => Dest,
Immed => Immed,
PC Sel => PC Sel,
rd enable => rd enable,
Reg In Sel => Reg In Sel,
Resetn => resetn,
RSone => RSone,
RStwo => RStwo,
Scan Data In => Scan Data In,
Scan_Enable => Shift En,
Stalln => Stalln,
wb_enable => wb enable,
scan_out => pipeline scan out,
IAR Enable => IAR Enable,
wr_enable => wr enable,
zero_flag => zero flag

)7

rw_control 1 : rw control PORT MAP (
Clock => Clock,
Prog Rd => Prog Rd,
Rd => Rd,
rd enable => rd enable,
resetn => resetn,
stalln => Stalln,
Wr => output en n,
wr_enable => wr enable

)7

zero _test 1 : zero test PORT MAP (
In word => A,
zero_flag => zero flag

)7

END structural;
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6. Dest_Decoder.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—-— ***** Dest Decoder model ****x*

-- external ports

ENTITY Dest Decoder IS PORT (
Dest : IN std logic vector (3 downto 0);
Enable : OUT std logic_vector (15 downto 1);
wb_enable : IN std logic

)

END Dest Decoder;

-- internal structure
ARCHITECTURE rtl OF Dest Decoder IS

-— SIGNALS
SIGNAL buf enable : std logic vector (15 downto 1);

-— INSTANCES

BEGIN

with dest select

buf enable <= "000000000000001"™ when "00OO1",
"000000000000010" when "0OO10",
"000000000000100" when "OO11",
"000000000001000" when "0100",
"000000000010000" when "0O101",
"000000000100000" when "0110",
"000000001000000" when "O111",
"000000010000000" when "1000",
"000000100000000" when "1001",
"000001000000000" when "1010",
"000010000000000" when "1011",
"000100000000000" when "1100",
"001000000000000" when "™1101",
"010000000000000" when "1110",
"100000000000000" when others;

Enable <= buf enable when (wb_enable = 'l') else
"000000000000000";
END rtl;
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7. dlx.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;
USE IEEE.std logic _arith.all;

—— kKX Kk k%K le model * Kk Kk kK
-- external ports

ENTITY dlx IS PORT (
Addr Int : OUT std logic vector (15 downto 0);
Clock in : IN std logic;
Data : INOUT std logic vector (15 downto 0);
Instr : IN std logic_vector (23 downto 0);
PC : OUT std logic_vector (15 downto 0);
Prog Rd : OUT std logic;
Rd : OUT std logic;
Resetn : IN std logic;
Stalln : IN std logic;
Wr : OUT std logic

);

END dlx;

-- internal structure
ARCHITECTURE structural OF dlx IS

-—- COMPONENTS
COMPONENT core

PORT (
Addr Int : OUT std logic vector (15 downto 0);
Clock in : IN std logic;
Input Data : IN std logic vector (15 downto 0);
Output Data : Out std logic vector (15 downto 0);
Instr : IN std logic_vector (23 downto 0);
PC : OUT std logic vector (15 downto 0);
Prog Rd : OUT std logic;
Rd : OUT std logic;
Resetn : IN std logic;
Stalln : IN std logic;
Wr : OUT std logic

):

END COMPONENT;
COMPONENT IO Pads

PORT (
Pads : INOUT std logic_vector (15 downto 0);
In Data : OUT std logic vector (15 downto 0);
Out Data : IN std logic vector (15 downto 0)
Output En n : IN std logic

’

);
END COMPONENT;
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-— SIGNALS

signal Input data : std logic_vector (15 downto 0);
signal Output data : std logic vector (15 downto 0);
signal wr int : std logic;

-— INSTANCES
BEGIN

wr <= wr_int;

corel : core PORT MAP (
Addr Int => Addr Int,
Clock in => Clock In,
Input Data => Input data,
Output Data => Output data,
Instr => Instr,

PC => PC,
Prog Rd => Prog Rd,
Rd => Rd,

Resetn => Resetn,
Stalln => stalln,
Wr => Wr_int

);

IO pPads 1 : IO _Pads PORT MAP (
Pads => Data,
In Data => Input Data,
Out Data => Output Data,
Output En n => wr int

)

END structural;

8. dix_out.vhd

—-— Test bench shell

library ieee;
use leee.std logic 1164.all;
use ileee.numeric std.all;

entity dlx testbench is end dlx testbench;
architecture testbench of dlx testbench is
-- Declaration of the component under test
component DLX

port (
Addr Int : OUT std logic vector (15 downto 0);
Clock in : IN std logic;
Data : INOUT std logic vector (15 downto 0);
Instr : IN std logic_vector (23 downto 0);
PC : OUT std logic_vector (15 downto 0);
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Prog Rd : OUT std logic;
Rd : OUT std logic;
Resetn : IN std logic;
Stalln : IN std logic;
Wr : OUT std logic

)

end component;

signal addr int : std logic vector (15 downto 0);
signal instr : std logic vector (23 downto 0);
signal pc : std logic vector (15 downto 0);
signal data : std logic vector (15 downto 0);
signal resetn : std logic;

signal prog rd : std logic;
signal rd : std logic;

signal wr : std logic;
signal stalln : std logic;
signal clock in : std logic;
begin
process --- 10 MHz clock
begin

clock in <= '0"';

wait for 25 ns;
clock in <= '0"';
wait for 25 ns;
clock in <= '1"';
wait for 25 ns;
clock in <= '0"';
wait for 25 ns;

end process;

process
begin ---- power up reset process

wait for 1 ns;

resetn <= '0';
stalln <= '1"';

wait for 10 ns;

resetn <= '1"';
wait;

end process;
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process
begin

wait for
instr <=
data <=
wait for
instr <=
wait for
instr <=
wait for
instr <=
wait for
instr <=
wait for
instr <=
wait for
instr <=
wait for
instr <=
wait for
instr <=
wait for
instr <=
wait for
instr <=
wait for
instr <=
wait for

instr <=

1 ns;

X"00oooQ™;

-—— NOP

"ZZZ2222222222222" ;

100 ns;

X"080101";

100 ns;

X"080202";

100 ns;

X"080303";

100 ns;

X"080404";

100 ns;

X"080505";

100 ns;

X"080606";

100 ns;

X"080707";

100 ns;

X"080808";

100 ns;

X"080909";

100 ns;

X"080AO0A";

100 ns;

X"080BOB";

100 ns;

X"ogococ";

LHI

LHI

LHI

LHT

LHI

LHI

LHI

LHI

LHT

LHT

LHI

LHI
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R1,

R2,

R3,

R4,

R5,

R6,

R7,

RS,

RS,

R10,

R11,

R12,

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12



wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

100 ns;

X"080DOD";

100 ns;

X"080EQOE";

100 ns;

X"080FOF"™;

100 ns;

X"4111FE";

100 ns;

X"2122FD";

100 ns;

X"013340";

100 ns;

X"4344FF";

100 ns;

X"235501";

100 ns;

X"036670";

100 ns;

X"297T7FE";

100 ns;

X"098880";

100 ns;

X"2A99FF";

100 ns;

X"O0AAABO";

100 ns;

X"2BBBFO";

LHI R13,

LHI R14,

LHI R15,

ADDI R1,

#13

#14

#15

R1, FE

ADDUI R2, R2, FD

ADD R3,

SUBI R4,

R3, R4

R4, FF

SUBUI R5, R5, #1

SUB R6,

ANDI R7,

AND RS,

ORI RY9,

OR R10,

XORI R11,
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R6, R7

R7, FF

R8, R9

R9, FF

R10, R11

R11, FO



wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

100 ns;

X"0BCCDO";

100 ns;

X"450100"™;

100 ns;

X"451200";

100 ns;

X"452300";

100 ns;

X"453400";

100 ns;

X"454500";

100 ns;

X"455600";

100 ns;

X"456700";

100 ns;

X"457800";

100 ns;

X"458900";

100 ns;

X"459A00";

100 ns;

X"45AB00";

100 ns;

X"45BCOO";

100 ns;

X"45CDO0";

100 ns;

XOR R12,

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

RO,

R1,

R2,

R3,

R4,

R5,

R6,

R7,

RS,

RS,

R10,

R11,

R12,
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R1

R2

R3

R4

R5

R6

R7

R8

RY

R10

R11

R12

R13

R12,

R13



instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

X"311104";

100 ns;

X"112240";

100 ns;

X"326304";

100 ns;

X"126440";

100 ns;

X"336504";

100 ns;

X"136640";

100 ns;

X"387701";

100 ns;

X"387800";

100 ns;

X"3D7900";

100 ns;

X"3D7A01";

100 ns;

X"1D1B1O";

100 ns;

X"1D1lcz20";

100 ns;

X"3C7D0o0";

100 ns;

X"3CT7EQ1"™;

100 ns;

SLLI R1, R1l, #4

SLL R2, R2, R4

SRLI R3, R6, #4

SRL R4,R6,R4

SRAI R5, R6, #4

SRA R6, R6, R4

SEQI R7, R7, #1

SEQI R8, R7, #0

SNEI R9, R7, #0

SNEI R10, R7, #1

SNE R11, R1, R1

SNE R12, R1, R2

SLTI R13, R7, #0

SLTI R13, R7, #0
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instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

X"450100";

100 ns;

X"451200";

100 ns;

X"452300";

100 ns;

X"453400";

100 ns;

X"454500";

100 ns;

X"455600";

100 ns;

X"456700";

100 ns;

X"457800";

100 ns;

X"458900";

100 ns;

X"459A00";

100 ns;

X"45AB0O0O";

100 ns;

X"45BCOO";

100 ns;

X"45CDO0";

100 ns;

X"45DEOO";

100 ns;

X"187180";

SW RO,

SW R1,

SW R2,

SW R3,

SW R4,

SW R5,

SW R6,

SW R7,

SW R8,

SW R,

SW R10,

SW R11,

SW R12,

SW R13,

SEQ R1,
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R1

R2

R3

R4

R5

R6

R7

R8

RY

R10

R11

R12

R13

R14

R7, RS



wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

100 ns;

X"187290";

100 ns;

X"1C7360";

100 ns;

X"1Cce470";

100 ns;

X"1A6570";

100 ns;

X"1AT7660";

100 ns;

X"5A8701";

100 ns;

X"5A8800";

100 ns;

X"5BBOFF";

100 ns;

X"5BBAO1";

100 ns;

X"5BBB0O2";

100 ns;

X"1B2C10";

100 ns;

X"1B2D40";

100 ns;

X"1B1E20";

100 ns;

X"450100";

SEQ

SLT

SLT

SGT

SGT

SGTI

SGTI

SLET

SLET

SLEI

SLE

SLE

SLE

R2, R7, R9

R3, R7, R6

R4, R6, R7

R5, R6, R7

R6, R7, R6

R8, R7, #1

R8, R8, O

R9, R11l, FF

R11, #1

R10,

R11,

R11, #2

R12, R2, RI1

R13, R2, R4

R14, R1, R2

SW RO, R1
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wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

100 ns;

X™"451200";

100 ns;

X"452300";

100 ns;

X"453400";

100 ns;

X"454500";

100 ns;

X"455600";

100 ns;

X"456700";

100 ns;

X"457800";

100 ns;

X"458900";

100 ns;

X"459A00";

100 ns;

X"45AB0O0O";

100 ns;

X"45BCO0O";

100 ns;

X"45CDO0";

100 ns;

X"45DEOO";

100 ns;

X"191120";

100 ns;

SW R1,

SW R2,

SW R3,

SW R4,

SW R5,

SW R6,

SW R7,

SW RS,

SW RS,

SW R10,

SW R11,

SW R12,

SW R13,

SGE R1,
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R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R1, R2



instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

X"192210";

100 ns;

X"192320";

100 ns;

X"595402";

100 ns;

X"5955FF";

100 ns;

X"596500";

100 ns;

X"450100";

100 ns;

X"451200";

100 ns;

X"452300";

100 ns;

X"453400";

100 ns;

X"454500";

100 ns;

X"455600";

100 ns;

X"C800FFE";

100 ns;

X"0oooo0o";

100 ns;

X"0o0oo0o00";

100 ns;

SGE R2, R2,

SGE R3, R2,

SGEI R4, R5,

SGEI R5, R5,

SGEI R6, RS,

SW RO, R1

SW R1, R2

SW R2, R3

SW R3, R4

SW R4, R5

SW R5, R6

J 0x00FF

NOP

NOP
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R1

R2

#02

FF

#0



instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <=

wait for

instr <

wait for

instr <=

wait for

instr <=

X"0o0o0o000"; --- NOP

100 ns;

X"000000"; --- NOP

100 ns;

X"E88000"; -—- JAL 0x8000
100 ns;

X"0o0oo0o00"; -—- NOP

100 ns;

X"000000"; -—- NOP

100 ns;

X"000000"; -—-- NOP

100 ns;

X"000000"; --- NOP

100 ns;

X"450F00"; -—-- SW RO, R15
100 ns;

X"C1200F"; --- BEQZ R2, OxOF
100 ns;

X"000000"; -—-- NOP

100 ns;

X"000000"; -—-- NOP

100 ns;

X"000000"; --- NOP

100 ns;
= X"000000"; --- NOP

100 ns;

X"C1000F"™; --- BEQZ RO, OxOF
100 ns;

X"000000"; -—-- NOP
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wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <=
wait for 100 ns;
instr <= X"COOOOQOF";
wait for 100 ns;
instr <= X"000000"™;

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;
instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"CO0200F";

wait for 100 ns;
instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"48F000";

X"00o0ooQ™"™;

--— NOP

-—— NOP

-—— NOP

--— BNEZ RO,

-—-— NOP

--- NOP

--- NOP

-—— NOP

--- BNEZ R2,

-—-— NOP

--- NOP

-—— NOP

-—-— NOP

--- JR RI15
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wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"68F000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"450F00";

wait for 100 ns;

instr <= X"28FF00";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

instr <= X"000000";

wait for 100 ns;

--- NOP

-—— NOP

-—--— NOP

-—-— NOP

--- JALR R15

--- NOP

-—— NOP

-—-— NOP

-—-— NOP

--- SW RO, R15

-—-—- TRAP FFO0O0

-—-— NOP

-—-— NOP

-—-— NOP
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instr <= X"000000"; --— NOP
wait for 100 ns;

instr <= X"F80000"; --- RFE
wait for 100 ns;

instr <= X"000000"™; --- NOP
wait for 100 ns;

instr <= X"000000"; -—- NOP
wait for 100 ns;

instr <= X"000000"; -—- NOP
wait for 100 ns;

instr <= X"000000"; --— NOP
wait for 100 ns;
DATA <= X"FFF1";

instr <= X"440100"; --— LW RO(0), R1
wait for 100 ns;

instr <= X"000000"; --- NOP
wait for 100 ns;

instr <= X"000000"; --- NOP
wait for 100 ns;

instr <= X"000000"; --- NOP
wait for 100 ns;
instr <= X"000000"; --- NOP
wait for 100 ns;
instr <= X"000000"; --- NOP
wait for 100 ns;
DATA <= "ZZZZZZZ2Z7Z727ZZ772727Z7Z";
instr <= X"000000"; --- NOP

wait for 100 ns;
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instr <= X"450100"; ---- SW RO(0), R1
wait for 100 ns;

instr <= X"000000"; --- NOP
wait for 100 ns;

instr <= X"000000"; --- NOP
wait for 100 ns;

instr <= X"000000"; --- NOP
wait for 100 ns;

instr <= X"000000"; --- NOP
wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

end process;

-- Place stimulus and analysis statements here

dut : DLX port map (
Instr => Instr,
Addr int => addr_ int,
PC => PC,
Data => data,
Resetn => resetn,
Prog Rd => prog rd,
Rd => rd,
Wr => wr,
Stalln => stalln,
Clock in => clock in

);

end testbench;

227



9. increment.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;
USE IEEE.std logic _arith.all;

—— kKX Kk k%K le model * Kk Kk kK
-- external ports

ENTITY dlx IS PORT (
Addr_Int : OUT std logic vector (15 downto 0);
Clock in : IN std logic;
Data : INOUT std logic vector (15 downto 0);
Instr : IN std logic vector (23 downto 0);
PC : OUT std logic_vector (15 downto 0);
Prog Rd : OUT std logic;
Rd : OUT std logic;
Resetn : IN std logic;
Stalln : IN std logic;
Wr : OUT std logic

)i

END dlx;
-— internal structure

ARCHITECTURE structural OF dlx IS
—-— COMPONENTS

COMPONENT core
PORT (
Addr_Int : OUT std logic vector (15 downto 0);
Clock in : IN std logic;
Input Data : IN std logic vector (15 downto 0);
Output Data : Out std logic vector (15 downto 0);
Instr : IN std logic_vector (23 downto 0);
PC : OUT std logic_vector (15 downto 0);
Prog Rd : OUT std logic;
Rd : OUT std logic;
Resetn : IN std logic;
Stalln : IN std logic;
Wr : OUT std logic
)
END COMPONENT;

COMPONENT IO Pads

PORT (
Pads : INOUT std logic_vector (15 downto 0);
In Data : OUT std logic vector (15 downto 0);
Out Data : IN std logic_vector (15 downto 0)
Output En n : IN std logic

’

)7
END COMPONENT;

-- SIGNALS
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'2');

signal Input data : std logic_vector (15 downto 0);
signal Output data : std logic vector (15 downto 0);
signal wr int : std logic;

—-— INSTANCES
BEGIN

wr <= wr_int;

corel : core PORT MAP (
Addr_ Int => Addr Int,
Clock in => Clock In,
Input Data => Input data,
Output Data => Output data,
Instr => Instr,

PC => PC,
Prog Rd => Prog Rd,
Rd => Rd,

Resetn => Resetn,
Stalln => stalln,
Wr => Wr_int

) ;

IO Pads 1 : IO Pads PORT MAP (
Pads => Data,
In Data => Input Data,
Out Data => Output Data,
Output En n => wr int

)

END structural;

10. 10_Pads.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—-—-—-— *** T0 Pads Model ***
---- external ports

Entity IO Pads is PORT (
Pads : INOUT std logic vector (15 downto O0);
In Data : Out std logic vector (15 downto 0);
Out Data : In std logic vector (15 downto 0)
Output En n : IN std logic

’

);
END IO Pads;

Architecture Behavior of IO Pads 1is
Begin
-—-In Data <= Pads;

Pads <= Out Data when Output En n = '0' else (Pads'range =>

In Data <= Pads;
end Behavior;
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11. log_barrel.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—— ***** ]log barrel model ****x*
-- external ports
ENTITY log barrel IS PORT (
ar or log : IN std logic;
In word : IN std logic_vector (15 downto 0);
1 or r : IN std logic;
Out word : Out std logic vector (15 downto 0);
Shift: IN std logic vector (3 downto 0)
);
END log barrel;

-- internal structure

ARCHITECTURE rtl OF log barrel IS

signal sell, sel2, sel3, seld4 : std logic vector ( 1 downto 0);
signal bufOb, buflc, buflOd : std logic vector (15 downto 0);
signal bufla, buflb, buflc, bufld : std logic_vector (15 downto
signal buf2a, buf2b, buf2c, buf2d : std logic vector (15 downto

signal buf3a, buf3b, buf3c, buf3d : std logic vector (15 downto

component word mux4

port (a : in std logic vector (15 downto 0);
b : in std logic_vector (15 downto 0);
¢ : in std logic vector (15 downto 0);
d : in std logic vector (15 downto 0);
sel : 1in std logic vector (1 downto 0);

out word : out std logic vector (15 downto 0)
);

end component;

begin
sell(l) <= 1 or r and shift(0);
sell (0) <= ar or log and shift(0);

sel2(l) <= 1 or r and shift(1l);
sel2(0) <= ar or log and shift(l);

sel3(l) <= 1 or r and shift(2);
sel3(0) <= ar or log and shift(2);

seld4(l) <=1 or r and shift(3);
seld4 (0) <= ar or log and shift(3);

buflb <= in word (14 downto 0) & "O";
buflOc <= "0" & in word(1l5 downto 1);
bufl0d <= in word(l5) & in word(1l5 downto 1);

buflb <= bufla (13 downto 0) & "00";
buflc <= "00" & bufla (15 downto 2);

230



bufld

buf2b

buf2c

buf2d
downto 4);

buf3b
buf3c
buf3d
buf3a(15) &

<= bufla(l5) & bufla(l5) & bufla(l5 downto 2);

<= buf2a(ll downto 0) & "0000";

<= "0000" & buf2a(l5 downto 4);

<= buf2a(l5) & buf2a(l5) & buf2a(l5) & buf2a(l5) & buf2a(l5
<= buf3a (7 downto 0) & "00000000";

<= "00000000"™ & buf3a(l5 downto 8);

<= buf3a(l5) & buf3a(l5) & buf3a(l5) & buf3a(l5) &
buf3a(15) & buf3a(l5) & buf3a(l5) & buf3a(l5 downto 8);

muxl: word mux4
port map (
a => in word,
b => buflb,
c => bufOc,
d => buf0d,

sel => sell,
out word => bufla
)

mux2: word mux4
port map (
a => bufla,
b => buflb,
c => buflc,
d => bufld,

sel => sel2,
out word => bufla

);

mux3: word mux4
port map (
a => bufla,
b => buf2b,
c => buflc,
d => buf2d,

sel => sel3,
out word => buf3a

);

mux4: word mux4
port map (
a => buf3a,
b => buf3b,
c => buf3c,
d => buf3d,

sel => seld,
out word => out word);

end rtl;
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12. pc_control.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—— ***** pc control model ****x*

-- external ports

ENTITY pc control IS PORT (
ALU Out : IN std logic vector (15 downto 0);
Clock : IN std logic;
D2 Inc_PC : OUT std logic_vector (15 downto 0);
D Link PC : OUT std logic vector (15 downto 0);
IAR Enable : IN std logic;
In PC : OUT std logic vector (15 downto 0);
PC : OUT std logic_vector (15 downto 0);
PC _Sel : IN std logic vector(l downto 0);
Resetn : IN std logic;
Scan Data In : IN std logic;
Scan_Data Out : OUT std logic;
Scan_Enable : IN std logic;
Stalln : IN std logic

);

END pc control;

-- internal structure
ARCHITECTURE structural OF pc control IS

—-- COMPONENTS
COMPONENT word reg single
PORT (
Clock : IN std logic;
Data In : IN std logic vector (15 downto 0);
Data out : OUT std logic vector (15 downto 0);
Enable : IN std logic;
Resetn : IN std logic;
Scan_Data In : IN std logic;
Scan_Enable : IN std logic
)
END COMPONENT;

COMPONENT word mux3

PORT (
A : IN std logic vector (15 downto 0);
B : IN std logic vector (15 downto 0)
C : IN std logic vector (15 downto 0);

Out word : OUT std logic_vector (15 downto 0);

Sel : IN std logic_vector (1l downto 0)

’

)7
END COMPONENT;

COMPONENT increment
PORT (
CI : IN std logic;
In word : IN std logic vector (15 downto 0);
Out word : OUT std logic_vector (15 downto 0)
) i
END COMPONENT;
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SIGNALS

SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL

IAR std logi
PC Incr

Buf In PC
Buf PC std 1
Buf D1 Inc PC
Buf D2 Inc PC
Buf D Link PC
Link PC
Buf Link PC

std
std logic vector (15 downto 0);

Buf Scan Data Out

std

¢ _vector (15 downto 0);
logic vector (15 downto 0);

ogic_vector (15 downto 0);
std logic;

std logic vector (15 downto 0);
std logic vector (15 downto 0);
std logic vector (15 downto 0);

logic vector (15 downto 0);

std logic vector (15 downto 0);

INSTANCES

BEGIN

In PC <= Buf In PC;

PC <= Buf PC;

D2 Inc PC <= Buf D2 Inc PC;
D Link PC <= Buf D Link PC;
Scan Data Out <= IAR(15);

halfword reg single 1
Clock => Clock,
Data In => Buf In PC,
Data out => Buf PC,
Enable => Stalln,
Resetn => Resetn,

Scan Data In => Scan Data In,

Scan Enable => Scan Enable
) ;
halfword mux3 1 word mux3
A => PC Incr,
B => ALU Out,
C => IAR,
Out word => Buf In PC,
Sel => PC Sel
) ;
halfword increment 1
CI => "'1"',
In word => Buf PC,
Out _word => PC Incr

increment

)
halfword reg single 2
Clock => Clock,
Data In => PC Incr,
Data out => Buf D1 Inc PC,
Enable => Stalln,
Resetn => Resetn,
Scan Data In => Buf PC(15),
Scan_Enable => Scan_ Enable
) i
halfword reg single 3
Clock => Clock,
Data In => Buf D1 Inc PC,
Data out => Buf D2 Inc PC,
Enable => Stalln,
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Resetn => Resetn,
Scan Data In => Buf D1 Inc PC(15),
Scan Enable => Scan Enable
)
halfword increment 2 : increment PORT MAP (
CI => "'1",
In word(0) => '1",
In word(1l5 downto 1) => Buf D2 Inc PC(1l5 downto 1),
Out word(1l5 downto 0) => Link PC(15 downto 0)
) i
halfword reg single 4 : word reg single PORT MAP (
Clock => Clock,
Data In(0) => Buf D2 Inc PC(0),
Data In (15 downto 1) => Link PC(15 downto 1),
Data out => Buf Link PC,
Enable => Stalln,
Resetn => Resetn,
Scan Data In => Buf D2 Inc PC(1l5),
Scan Enable => Scan Enable
) i
halfword reg single 5 : word reg single PORT MAP (
Clock => Clock,
Data In => Buf Link PC,
Data Out => Buf D Link PC,
Enable => Stalln,
Resetn => Resetn,
Scan _Data In => Buf Link PC(15),
Scan Enable => Scan Enable
)
halfword reg single 6 : word reg single PORT MAP (
Clock => Clock,
Data In => Buf D Link PC,
Data out => IAR,
Enable => IAR Enable,
Resetn => Resetn,
Scan_Data In => Buf D Link PC(15),
Scan_Enable => Scan Enable
)
END structural;

13. pipeline.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—— Kk kKK pipeline model ***x*x*

-- external ports

ENTITY pipeline IS PORT (
alu op : OUT std logic vector (4 downto 0);
A Mux : OUT std logic _vector(l downto 0);
B Mux : OUT std logic vector(l downto O0);
Clock : IN std logic;
Data In : IN std logic vector (23 downto 0);
Dest : OUT std logic vector (3 downto O0);
Immed : OUT std logic vector (15 downto 0);
PC Sel : OUT std logic vector(l downto 0);
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rd enable : OUT std logic;
Reg In Sel : OUT std logic_vector(l downto 0);
Resetn : IN std logic;
RSone : OUT std logic vector (3 downto O0);
RStwo : OUT std logic vector (3 downto 0);
Scan_Data In : IN std logic;
Scan_Enable : IN std logic;
Stalln : IN std logic;
wb enable : OUT std logic;
scan_out : OUT std logic;
IAR Enable : OUT std logic;
wr_enable : OUT std logic;
zero flag : IN std logic
);
END pipeline;

-- internal structure
ARCHITECTURE rtl OF pipeline IS

—-— COMPONENTS

COMPONENT twelve bit reg single
PORT (
Clock : IN std logic;
Data In : IN std logic vector (1l downto 0);
Data out : OUT std logic vector(ll downto 0);
Enable : IN std logic;
Resetn : IN std logic;
Scan Data In : IN std logic;
Scan_Enable : IN std logic
)
END COMPONENT;

COMPONENT twenty four bit reg single
PORT (
Clock : IN std logic;
Data In : IN std logic vector (23 downto 0);
Data out : OUT std logic vector (23 downto 0);
Enable : IN std logic;
Resetn : IN std logic;
Scan_Data In : IN std logic;
Scan_Enable : IN std logic
)
END COMPONENT;

-— SIGNALS

SIGNAL Dec Instr : std logic vector (23 downto 0);
SIGNAL Ex Instr : std logic_vector (23 downto 0);
SIGNAL Mem Instr : std logic vector (11 downto 0);
SIGNAL WB Instr : std logic vector (11 downto 0);

—-— INSTANCES
BEGIN

————— x*xxkx* decode pipeline stage **x*x*x*x
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twenty bit reg single 1 : twenty four bit reg single PORT MAP (

Clock => Clock,
Data In => Data In,

Data out => Dec Instr,
Enable => Stalln,
Resetn => Resetn,
Scan Data In => Scan Data In,
Scan Enable => Scan Enable

) ;

process (Dec Instr)
begin
RSone <= Dec Instr(l5 downto 12);

--—- assign RS2 (check for SW instruction)

if (Dec Instr (23 downto 16) = X"45") then
RStwo <= Dec Instr(ll downto 8) ;

else RStwo <= Dec Instr(7 downto 4);

end if;

end process;

—————— xkxkx* execute pipeline stage ***x*xxkxdx

twenty four bit reg single 2 : twenty four bit reg single PORT

MAP (
Clock => Clock,
Data In => Dec Instr,
Data out => Ex Instr,
Enable => Stalln,
Resetn => Resetn,
Scan Data In => Dec_ Instr(23),
Scan_Enable => Scan Enable
)

Immed <= Ex Instr (15 downto 0); --—- assign immediate wvalue
alu op <= Ex Instr (20 downto 16); ---- assign alu opcodes
b mux <= Ex Instr (22 downto 21); —--—- assign b mux

PC Sel <= "01" when Ex Instr (23 downto 16)
when OP J
"01" when Ex Instr (23 downto 16)
when OP_ JAL
"0" & zero flag when Ex Instr (23
else —---when OP_ BEQZ

X"C8" else -—--——---

X"E8" else —-———-

downto 16) = X"C1"

"0" & not(zero flag) when Ex Instr (23 downto 16) =

X"CO0" else ---when OP BEQZ
"10" when Ex Instr (23 downto 16)
"01" when Ex Instr (23 downto 16)

OP TRAP
"01" when Ex Instr (23 downto 16)
OP_JR
"01l" when Ex Instr (23 downto 16)
OP JALR

"OO";

process (Ex Instr)
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begin

case Ex Instr (23 downto 16) is

when X"C8" => = —---—= when OP J

A Mux <= "11";
when X"E8" => = —---- when OP_JAL

A Mux <= "11";

when X"C1" => @ ———=—= when OP_ BEQZ
A Mux <= "01";

when X"CO" => ————= when OP_ BNEZ
A Mux <= "01";

when X"08" => = —---—- when OP LHI
A Mux <= "10";

when X"F8" => = ———-- when OP_ RFE
A Mux <= "00";

when X"28" => = ----= when OP_ TRAP
A Mux <= "11";

when X"48" => = ———-- when OP JR
A Mux <= "00";

when X"68" => = ————= when OP_ JALR
A Mux <= "00";

when others => = —-————- OTHERS
A Mux <= "00";

end case;

end process;

***** memory stage of pipeline **¥xxxxx

twelve bit reg single 1
Clock => Clock,
Data In(ll downto 4) => Ex Instr (23 downto 16),
Data In(3 downto 0) => Ex Instr(ll downto 8),
Data out => Mem Instr,
Enable => Stalln,
Resetn => Resetn,
Scan Data In => Ex Instr(23),
Scan_Enable => Scan Enable

twelve bit reg single PORT MAP (

)7

process
begin
case Mem Instr(ll

(Mem Instr)

downto 4) 1is

when X"45" =>

rd enable <= '0'; = —---—- OP SW (write)
wr_enable <= '1';

when X"44" => = ————-- OP LW (read)
rd enable <= '1"';
wr_ enable <= '0';

when others =>
rd enable <= '0';
wr_enable <= '0';

end case;
end process;

K’k ok k ok ok k ok Write back Stage *hkkkkkkkx
twelve bit reg single 2 twelve bit reg single
Clock => Clock,

PORT MAP (
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Data In => Mem Instr,

Data out => WB Instr,

Enable => Stalln,

Resetn => Resetn,

Scan Data In => Mem Instr(11),
Scan_Enable => Scan_ Enable

);

scan _out <= WB Instr(1l1l);
process (WB_ Instr)
begin

-—-- check for Jump and Link Instructions to set Reg In Sel(0) =

if (WB_Instr(ll downto 4) = X"E8" or WB Instr(ll downto 4) =
X"68") then
Reg In Sel(l) <= '1';
Dest <= "1111";
else Reg In Sel(l) <= '0';
Dest <= WB Instr (3 downto 0);
end if;

-—-- check for TRAP to set IAR Enable =1
if (WB_Instr(ll downto 4) = X"28") then
IAR Enable <= '1"';
else IAR Enable <= '0';

end if;
---- check for LW to set Reg In Sel(l) =1
if (WB Instr(ll downto 4) = X"44" ) then

Reg In Sel(0) <= '1"';
else Reg In Sel(0) <= '0';
end if;

—————— set write back enable
case WB Instr(ll downto 4) is

when X"C8" => = —----- when OP J
WB Enable <= '0';

when X"C1" =>  ———=—= when OP_ BEQZ
WB Enable <= '0';

when X"CO0" => = ---== when OP_BNEZ
WB_Enable <= '0';

when X"45" => = @ ———-- when OP_ SW
WB Enable <= '0';

when X"F8" => = ————-- when OP_ RFE
WB_Enable <= '0';

when X"28" => = —----= when OP_ TRAP
WB Enable <= '0';

when X"48" => = ————- when OP_ JR
WB _Enable <= '0';

when X"00" =>  ----= when OP_NOP

WB_Enable <= '0';
when others =>
WB _Enable <= '1';
end case;
end process;
END rtl;
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14. regfile.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

_____ *kk kK kK regfile model *AkhkkkkhkkkkhkkKhKk
--—- external ports
ENTITY regfile IS PORT (
A : OUT std logic_vector (15 downto 0);
B : OUT std logic_vector (15 downto 0);
clock : IN std logic;
Data In : IN std logic vector (15 downto 0);
Dest : IN std logic vector (3 downto 0);
stalln : IN std logic;
RSone : IN std logic vector (3 downto 0);
RStwo : IN std logic vector (3 downto 0);
scan_data in : IN std logic;
scan_enable : IN std logic;
Resetn : IN std logic;
wb_enable : IN std logic
)i
END regfile;

--—- internal structure
ARCHITECTURE structural OF regfile is

-——— COMPONENTS

COMPONENT Dest Decoder

PORT (
Dest : IN std logic_vector (3 downto 0);
Enable : OUT std logic_vector (15 downto 1);
wb_enable : IN std logic

)7

END COMPONENT;

COMPONENT word reg single
PORT (
Clock : IN std logic;
Data In : IN std logic vector (15 downto 0);
Data out : OUT std logic vector (15 downto 0);
enable : IN std logic;
Resetn : IN std logic;
Scan Data In : IN std logic;
Scan_Enable : IN std logic
);
END COMPONENT;

COMPONENT word muxl16

PORT (
In Word0 : IN std logic vector
In Wordl : IN std logic vector downto
In Word2 : IN std logic vector downto

(15 downto
(15
(15
In Word3 : IN std logic vector (15 downto
(15
(15
(15
(15

~e N

RS

In Word4 : IN std logic vector downto
In Word5 : IN std logic vector downto
In Word6 : IN std logic vector downto
In Word7 : IN std logic vector downto

239

~e N

~.

cNeoNoNoNoNoNoNe)
~

~e



In Word$8 IN std logic_vector (15 downto 0);
In Word9 : IN std logic vector (15 downto 0);
In WordlO : IN std logic vector (15 downto 0
In Wordll IN std logic vector (15 downto 0
In Wordl2 IN std logic_vector (15 downto O
In Wordl3 IN std logic_vector (15 downto O
In Wordl4 IN std logic_vector (15 downto O
In Wordl5 : IN std logic vector (15 downto 0
Out word : Out std logic vector (15 downto O
Sel IN std logic_vector (3 downto 0)

)

END component;
————— signals
Enable
Regl Data
Reg2 Data
Reg3 Data
Reg4 Data
Reg5 Data
Reg6 Data
Reg7 Data
Reg8 Data
Reg9 Data
ReglO Data
Regll Data
Regl2 Data
Regl3 Data
Regl4 Data
Regl5 Data
RegA Data
MuxA Data
MuxB Data
zero word

begin
zero _word <= "000

-—-——- port maps

Dest Decoderl
Dest=> Dest

std logic vector (15 downto 1);

std logic vector (15 downto 0);
std logic vector (15 downto 0);
std logic vector (15 downto 0);
std logic vector (15 downto 0);
std logic vector (15 downto 0);
std logic vector (15 downto 0);
std logic vector (15 downto 0);
: std logic vector (15 downto 0);
: std logic vector (15 downto 0);
: std logic _vector (15 downto 0);
std logic vector (15 downto 0);
std logic vector (15 downto 0);
std logic vector (15 downto 0);
std logic vector (15 downto 0);
: std logic _vector (15 downto 0);
std logic vector (15 downto 0);
std logic vector (15 downto 0);
std logic vector (15 downto 0);
std logic vector (15 downto 0);

0000000000C0O0Q™;

Dest Decoder PORT MAP (

4

Enable => Enable,

wb_enable =
) i
word regl
Clock => cl
Data In =>
Data out =>

word

> wb_enable

reg single PORT MAP (
ock,

Data In,

Regl Data,

Enable => Enable(l),
Resetn => Resetn,
Scan Data In => Scan Data In,

Scan Enable

=> Scan_Enable
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word reg2 : word reg single PORT MAP
Clock => clock,
Data In => Data In,
Data out => Reg2 Data,
Enable => Enable(2),
Resetn => Resetn,
Scan Data In => Regl Data(15),
Scan Enable => Scan Enable
)7
word reg3 : word reg single PORT MAP
Clock => clock,
Data In => Data In,
Data out => Reg3 Data,
Enable => Enable(3),
Resetn => Resetn,
Scan Data In => Reg2 Data(l5),
Scan_Enable => Scan Enable
)7
word reg4 : word reg single PORT MAP
Clock => clock,
Data In => Data In,
Data out => Reg4 Data,
Enable => Enable (4),
Resetn => Resetn,
Scan Data In => Reg3 Data(l5),
Scan_Enable => Scan_ Enable
)i
word reg5 : word reg single PORT MAP
Clock => clock,
Data In => Data In,
Data out => Regb5 Data,
Enable => Enable(5),
Resetn => Resetn,
Scan Data In => Reg4 Data(15),
Scan_ Enable => Scan Enable
)i
word reg6 : word reg single PORT MAP
Clock => clock,
Data In => Data In,
Data out => Reg6 Data,
Enable => Enable (6),
Resetn => Resetn,
Scan Data In => Reg5 Data(15),
Scan_Enable => Scan Enable
)
word reg?7 : word reg single PORT MAP
Clock => clock,
Data In => Data In,
Data out => Reg’/ Data,
Enable => Enable(7),
Resetn => Resetn,
Scan Data In => Reg6 Data(l5),
Scan_Enable => Scan Enable
)
word reg8 : word reg single PORT MAP
Clock => clock,
Data In => Data In,
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Data out => Reg8 Data,
Enable => Enable(8),
Resetn => Resetn,
Scan Data In => Reg7 Data(15),
Scan Enable => Scan Enable
)7
word reg9 : word reg single PORT MAP (
Clock => clock,
Data In => Data In,
Data out => Reg9 Data,
Enable => Enable(9),
Resetn => Resetn,
Scan Data In => Reg8 Data(15),
Scan Enable => Scan Enable
)7
word reglO : word reg single PORT MAP (
Clock => clock,
Data In => Data In,
Data out => ReglO Data,
Enable => Enable (10),
Resetn => Resetn,
Scan Data In => Reg9 Data(l5),
Scan Enable => Scan Enable
)
word regll : word reg single PORT MAP (
Clock => clock,
Data In => Data In,
Data out => Regll Data,
Enable => Enable(11),
Resetn => Resetn,
Scan Data In => ReglO Data(l15),
Scan_Enable => Scan Enable
)
word regl2 : word reg single PORT MAP (
Clock => clock,
Data In => Data In,
Data out => Regl2 Data,
Enable => Enable(12),
Resetn => Resetn,
Scan Data In => Regll Data(l15),
Scan_Enable => Scan_ Enable
)7
word regl3 : word reg single PORT MAP (
Clock => clock,
Data In => Data In,
Data out => Regl3 Data,
Enable => Enable (13),
Resetn => Resetn,
Scan Data In => Regl2 Data(l5),
Scan Enable => Scan Enable
)7
word regl4 : word reg single PORT MAP (
Clock => clock,
Data In => Data In,
Data out => Regl4 Data,
Enable => Enable(14),
Resetn => Resetn,
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Scan Data In => Regl3 Data(l5),
Scan_Enable => Scan Enable

)

word regl5 : word reg single PORT MAP (
Clock => clock,
Data In => Data In,
Data out => Reglb5 Data,
Enable => Enable(15),
Resetn => Resetn,
Scan Data In => Regl4 Data(l5),
Scan_Enable => Scan_ Enable

);

word regA : word reg single PORT MAP (
Clock => clock,
Data In => MuxA Data,
Data out => RegA Data,
Enable => stalln,
Resetn => Resetn,
Scan Data In => Regl5 Data(l5),
Scan_ Enable => Scan Enable

)i
A <= RegA Data;

word regB : word reg single PORT MAP (
Clock => clock,
Data In => MuxB Data,
Data out => B,
Enable => stalln,
Resetn => Resetn,
Scan_Data In => RegA Data(15),
Scan_Enable => Scan Enable
)
MuxA : word muxl6 PORT MAP (

In WordO => zero_word,
In Wordl => Regl Data,
In Word2 => Reg2 Data,
In Word3 => Reg3 Data,
In Word4 => Reg4 Data,
In Wordb => Regb Data,
In Word6 => Reg6_Data,
In Word7 => Reg’ Data,
In Word$8 => Reg8 Data,
In Word9 => Reg9 Data,

In Wordl0 => ReglO Data,
In Wordll => Regll Data,
In Wordl2 => Regl2 Data,
In Wordl3 => Regl3 Data,
In Wordl4 => Regl4 Data,
In Wordl5 => Regl5 Data,
Out_word => MuxA Data,
Sel => RSone

);

MuxB : word muxl6 PORT MAP (

In WordO => zero word,
In Wordl => Regl Data,
In Word2 => Reg2 Data,
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In Word3 => Reg3 Data,

In Word4 => Reg4 Data,
In Word>b => Regb Data,
In Word6 => Reg6 Data,
In Word7 => Reg’/ Data,
In Word$8 => Reg8 Data,
In Word9 => Reg9 Data,

In Wordl0 => ReglO Data,
In Wordll => Regll Data,
In Wordl2 => Regl2 Data,
In Wordl3 => Regl3 Data,
In Wordl4 => Regl4 Data,
In Wordl5 => Regl5 Data,
Out word => MuxB Data,
Sel => RStwo
);

END structural;

15.  rw_control.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—— ***** ry control model *****
-—- external ports
ENTITY rw_control IS PORT (
Clock : IN std logic;
Prog Rd : OUT std logic;
Rd : OUT std logic;
rd enable : IN std logic;
resetn : IN std logic;
stalln : IN std logic;
Wr : OUT std logic;
wr enable : IN std logic
)
END rw_control;

-- internal structure
ARCHITECTURE rtl OF rw control IS

-— SIGNALS
SIGNAL clockn : std logic; --- inverted clock

BEGIN

clockn <= not(Clock);

Wr <= not (clockn and wr_enable);

Rd <= not (clockn and rd enable);

Prog Rd <= not (clockn and resetn and stalln);
end rtl;
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16. scan_reg.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—— ***** gcan reg model *****
-- external ports

ENTITY scan_reg IS PORT (
clk : IN std logic;
data_in : IN std logic;
data out : OUT std logic;
enable : IN std logic;
resetn : IN std logic;
scan_data in : IN std logic;
scan_enable : IN std logic
);

END scan reg;
-— internal structure
ARCHITECTURE rtl OF scan_reg IS

-— INSTANCES
BEGIN

process (clk, resetn)

begin
if (resetn = '0') then
data out <= '0';
elsif (clk = '1l' and clk'event) then
if (scan_enable = 'l1') then
data out <= scan data in;
elsif (enable = 'l') then
data out <= data in;
end if;
end if;

end process;

END rtl;

17. twelve bit_reg single.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

-— ***** tyelve bit reg single model ***x*
-- external ports
ENTITY twelve bit reg single IS PORT (
Clock : IN std logic;
Data In : IN std logic vector (1l downto 0);
Data out : OUT std logic vector(ll downto O0);
Enable : IN std logic;
Resetn : IN std logic;
Scan _Data In : IN std logic;
Scan Enable : IN std logic
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);
END twelve bit reg single;

-- internal structure
ARCHITECTURE structural OF twelve bit reg single IS

—-— COMPONENTS

COMPONENT scan reg

PORT (
clk : IN std logic;
data _in : IN std logic;
data out : OUT std logic;
enable : IN std logic;
resetn : IN std logic;
scan_data in : IN std logic;
scan_enable : IN std logic

);

END COMPONENT;

-— SIGNALS
signal buf data out : std logic_vector (10 downto 0);

—-— INSTANCES
BEGIN
Data out (0) <= buf data out(0);
Data out(l) <= buf data out(l);
Data out(2) <= buf data out(2);
Data out(3) <= buf data out(3);
Data out (4) <= buf data out(4);
Data out(5) <= buf data out(5);
Data out (6) <= buf data out (6);
Data out(7) <= buf data out(7);
Data out(8) <= buf data out(8);
Data out(9) <= buf data out(9);
(10 £ (10

Data out ) <= buf data ou );
scan reg 1 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(1l),
data out => buf data out(l),
enable => Enable,
resetn => Resetn,
scan_data in => buf data out(0),
scan_enable => Scan Enable
)
scan_reg 2 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(2),
data out => buf data out(2),
enable => Enable,
resetn => Resetn,
scan _data in => buf data out(l),
scan_enable => Scan Enable
)
scan_reg 3 : scan_reg PORT MAP (
clk => Clock,

246



data_in => Data In(3),
data out => buf data out(3),
enable => Enable,
resetn => Resetn,
scan_data in => buf data out(2),
scan_enable => Scan Enable

)

scan reg 4 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(4),
data out => buf data out(4),
enable => Enable,
resetn => Resetn,
scan data in => buf data out(3),
scan_enable => Scan Enable

)i

scan_reg 5 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(0),
data out => buf data out (0),
enable => Enable,
resetn => Resetn,
scan _data in => Scan Data In,
scan_enable => Scan Enable

)

scan_reg 6 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(5),
data out => buf data out(5),
enable => Enable,
resetn => Resetn,
scan_data in => buf data out(4),
scan_enable => Scan Enable

)7

scan_reg 7 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(6),
data out => buf data out(6),
enable => Enable,
resetn => Resetn,
scan_data in => buf data out(5),
scan_enable => Scan Enable

)7

scan _reg 8 : scan_reg PORT MAP (
clk => Clock,
data_in => Data In(7),
data out => buf data out(7),
enable => Enable,
resetn => Resetn,
scan_data in => buf data out(6),
scan_enable => Scan_ Enable

)i

scan _reg 9 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(8),
data out => buf data out(8),
enable => Enable,

247



resetn => Resetn,
scan_data in => buf data out(7),
scan_enable => Scan Enable

)7

scan_reg 10 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(9),
data out => buf data out(9),
enable => Enable,
resetn => Resetn,
scan_data in => buf data out(8),
scan_enable => Scan Enable

)7

scan reg 11 : scan reg PORT MAP (
clk => Clock,
data _in => Data In(10),
data out => buf data out(10),
enable => Enable,
resetn => Resetn,
scan_data in => buf data out(9),
scan_enable => Scan_ Enable

);

scan reg 12 : scan_reg PORT MAP (
clk => Clock,
data _in => Data In(11l),
data out => Data out(11l),
enable => Enable,
resetn => Resetn,
scan_data in => buf data out(10),
scan_enable => Scan_ Enable
)
END structural;

18. twenty four bit reg single.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

-— ***** tyenty four bit reg single model *****
-- external ports
ENTITY twenty four bit reg single IS PORT (
Clock : IN std logic;
Data In : IN std logic vector (23 downto 0);
Data out : OUT std logic vector (23 downto 0);
Enable : IN std logic;
Resetn : IN std logic;
Scan_Data In : IN std logic;
Scan_Enable : IN std logic
);
END twenty four bit reg single;

-- linternal structure
ARCHITECTURE structural OF twenty four bit reg single IS

248



—-— COMPONENTS

Component twelve bit reg single

PORT (
Clock : IN std logic;
Data In : IN std logic vector (1l downto 0);
Data out : OUT std logic vector(ll downto O0);
Enable : IN std logic;
Resetn : IN std logic;
Scan_Data In : IN std logic;
Scan_Enable : IN std logic

);

END Component;

-— SIGNALS
SIGNAL Buf Data outll : std logic;

—-— INSTANCES
BEGIN
Data out (11l) <

Buf Data outll;

twelve bit reg singlel : twelve bit reg single PORT MAP (
Clock => Clock,
Data In => Data In(1l downto 0),
Data Out (10 downto 0) => Data Out (10 downto 0),
Data Out(11l) => Buf Data outll,
Enable => Enable,
Resetn => Resetn,
Scan Data In => Scan Data In,
Scan Enable => Scan Enable
)
twelve bit reg single2 : twelve bit reg single PORT MAP (
Clock => Clock,
Data In => Data In(23 downto 12),
Data Out => Data Out (23 downto 12),
Enable => Enable,
Resetn => Resetn,
Scan_Data In => Buf Data outll,
Scan_Enable => Scan Enable
)
END structural;

19.  word_mux16.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—— ****x* yword muxl6 model *****
-- external ports

ENTITY word muxl6 IS PORT (
In Word0O : IN std logic vector (15 downto 0);
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In Wordl IN std logic_vector (15 downto
In Word2 IN std logic vector (15 downto
In Word3 IN std logic vector (15 downto
In Word4 IN std logic vector (15 downto
In Wordb IN std logic _vector (15 downto
In Word6 IN std logic_vector (15 downto
In Word7 IN std logic vector (15 downto
In Word$8 IN std logic vector (15 downto
In Word9 : IN std logic vector (15 downto
In WordlO IN std logic _vector (15 downto
In Wordll IN std logic_vector (15 downto
In Wordl2 IN std logic vector (15 downto
In Wordl3 IN std logic vector (15 downto
In Wordl4 IN std logic vector (15 downto
In Wordl5 : IN std logic vector (15 downto
Out word : Out std logic_vector (l5 downto
Sel IN std logic_vector (3 downto 0)
)7
END word muxl6;
-- internal structure
ARCHITECTURE rtl OF word muxl6 IS
BEGIN
with sel select
Out word <= In Word0 when "0000",
In Wordl when "0001",
In Word2 when "0010",
In Word3 when "0011",
In Word4 when "0100",
In Word5 when "0101",
In Word6 when "0110",
In Word7 when "O0111",
In Word8 when "1000",
In Word9 when "1001",
In WordlO when "1010",
In Wordll when "1011",
In Wordl2 when "1100",
In Wordl3 when "1101",
In Wordl4 when "1110",
In Wordl5 when others;

END rtl;

20.

LIBRARY IEEE;

word_mux3.vhd

USE IEEE.std logic 1164.all;

—— ***** word mux3 model **x*x*

-- external ports

ENTITY word mux3 IS PORT (

A
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B : IN std logic _vector (15 downto 0);
C : IN std logic vector (15 downto 0);
Out word : Out std logic vector (15 downto 0);
Sel : IN std logic vector(l downto 0)
)7
END word mux3;

-- internal structure

ARCHITECTURE rtl OF wordimux3 IS

BEGIN

process (A, B, C, Sel)

begin

case sel is
when "00" => Out word <= A;
when "01" => Out word <= B;
when others => Out word <= C;

end case;

end process;

END rtl;

21. word_mux4.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—— ***** yword mux4 model ****x*

-- external ports

ENTITY word mux4 IS PORT (

: IN std logic vector (15 downto

: IN std logic_vector (15 downto
IN std logic_vector (15 downto

: IN std logic_vector (15 downto 0);

Out word : Out std logic vector (15 downto 0);

Sel : IN std logic vector(l downto 0)

) 4
)7
) .

’

o Qw @
[eNeNe)

)
END word mux4;

-- internal structure

ARCHITECTURE rtl OF word mux4 IS

BEGIN

process (A, B, C, D, Sel)

begin

case sel 1is
when "00" => Out word <= A;
when "01" => Out word <= B;
when "10" => Out word <= C;
when others => Out word <= D;

end case;

end process;

END rtl;
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22. word_reg_single.vhd
LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—— **%%*% yord reg single model ***x*x*
-- external ports

ENTITY word reg single IS PORT (
Clock : IN std logic;

Data In : IN std logic vector (15 downto 0);

Data out : OUT std logic vector (15 downto
Enable : IN std logic;
Resetn : IN std logic;
Scan_Data In : IN std logic;
Scan_Enable : IN std logic
);
END word reg single;

-- internal structure
ARCHITECTURE structural OF word reg single IS

—-— COMPONENTS

COMPONENT scan_ reg

PORT (
clk : IN std logic;
data_in : IN std logic;
data out : OUT std logic;
enable : IN std logic;
resetn : IN std logic;
scan_data in : IN std logic;
scan_enable : IN std logic

);

END COMPONENT;

-- SIGNALS
SIGNAL Buf Data out : std logic_vector(l4 downto

-— INSTANCES

BEGIN

Data out (0) <= Buf Data out(0);
Data out (1) <= Buf Data out(1);
Data out (2) <= Buf Data out (2);
Data out (3) <= Buf Data out(3);
Data out (4) <= Buf Data out (4);
Data out (5) <= Buf Data out (5);
Data out (6) <= Buf Data out(6);
Data out (7) <= Buf Data out (7);
Data out (8) <= Buf Data out(8);
Data out(9) <= Buf Data out(9);
Data out (10) <= Buf Data out (10);
Data out(11l) <= Buf Data out (11);

0);



Data out (12)
Data out (13)
Data out (14)

<= Buf Data out(12);
<= Buf Data out(13);
<= Buf Data out (14);

scan_reg 1 scan_reg
clk => Clock,
data in => Data In(1l),
data out => Buf Data out(l),
enable => Enable,
resetn => Resetn,
scan_data in => Buf Data out(0),
scan_enable => Scan Enable

PORT MAP (

)

scan_reg 2 scan_reg
clk => Clock,
data_in => Data In(2),
data out => Buf Data out(2),
enable => Enable,
resetn => Resetn,
scan_data in => Buf Data out(1l),
scan_enable => Scan_ Enable

PORT MAP (

) ;

scan reg 3 scan_reg
clk => Clock,
data in => Data In(3),
data out => Buf Data out(3),
enable => Enable,
resetn => Resetn,
scan _data in => Buf Data out(2),
scan_enable => Scan Enable

PORT MAP (

);

scan_reg 4 scan_reg
clk => Clock,
data in => Data In(4),
data out => Buf Data out(4),
enable => Enable,
resetn => Resetn,
scan _data in => Buf Data out(3),
scan_enable => Scan Enable

PORT MAP (

)

scan_reg 6 scan_reg
clk => Clock,
data in => Data In(5),
data out => Buf Data out(5),
enable => Enable,
resetn => Resetn,
scan_data in => Buf Data out(4),
scan_enable => Scan Enable

PORT MAP (

) ;

scan_reg 7 scan_reg
clk => Clock,
data _in => Data In(6),
data out => Buf Data out(6),
enable => Enable,
resetn => Resetn,
scan_data in => Buf Data out(5),
scan_enable => Scan Enable
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)i

scan _reg 8 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(7),
data out => Buf Data out(7),
enable => Enable,
resetn => Resetn,
scan _data in => Buf Data out(6),
scan_enable => Scan Enable

)7

scan_reg 9 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(8),
data out => Buf Data out(8),
enable => Enable,
resetn => Resetn,
scan_data in => Buf Data out(7),
scan_enable => Scan Enable

)7

scan_reg 10 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(9),
data out => Buf Data out(9),
enable => Enable,
resetn => Resetn,
scan_data in => Buf Data out(8),
scan_enable => Scan Enable

)7

scan reg 11 : scan reg PORT MAP (
clk => Clock,
data in => Data In(10),
data out => Buf Data out (10),
enable => Enable,
resetn => Resetn,
scan_data in => Buf Data out(9),
scan_enable => Scan_ Enable

):

scan reg 12 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(11),
data out => Buf Data out(11),
enable => Enable,
resetn => Resetn,
scan _data in => Buf Data out(10),
scan_enable => Scan Enable

):

scan_reg 13 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(12),
data out => Buf Data out(12),
enable => Enable,
resetn => Resetn,
scan _data in => Buf Data out(11l),
scan_enable => Scan Enable

)

scan _reg 14 : scan_reg PORT MAP (
clk => Clock,
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data _in => Data In(13),
data out => Buf Data out(13),
enable => Enable,
resetn => Resetn,
scan_data in => Buf Data out(12),
scan_enable => Scan Enable

)

scan reg 15 : scan reg PORT MAP (
clk => Clock,
data in => Data In(14),
data out => Buf Data out(14),
enable => Enable,
resetn => Resetn,
scan data in => Buf Data out(13),
scan_enable => Scan Enable

)i

scan_reg 16 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(15),
data out => Data out(15),
enable => Enable,
resetn => Resetn,
scan data in => Buf Data out(14),
scan_enable => Scan Enable

)7

scan_reg 5 : scan_reg PORT MAP (
clk => Clock,
data in => Data In(0),
data out => Buf Data out(0),
enable => Enable,
resetn => Resetn,
scan_data in => Scan Data In,
scan_enable => Scan Enable

)7

END structural;

23.  word_set.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

—— ****x* yword set model ****x*

-—- external ports

ENTITY word set IS PORT (
In word : IN std logic_vector (15 downto 0);
set op : IN std logic vector (2 downto 0);
set out : OUT std logic

)

END word set;

-- internal structure
ARCHITECTURE rtl OF wordiset IS

component zero test
PORT (
In word : in std logic_vector (15 downto 0);
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zero_ flag

);

END component;

signal zero flag

begin
process
begin

(In_word,

case set op is

when
when
when
when
when
when
end cas
end pro
zero te

);

END rtl

"000"
"Ool"
"010"
"o11"

"lOO" —

OUT std logic

std logic;

set out
set out
set out
set out
set out

set op, zero_ flag)

<= zero_ flag;

<= (not(In word(1l5)) or zero_ flag);

<= not (In word(l5)) and not(zero flag);
<= (In _word(1l5) or zero flag);

<= In word(1l5);

others => set out <= not(zero flag);

ey
cess;
stl

’

zero test port map (
In word => In word,
zero flag => zero flag

24. zero_test.vhd

LIBRARY IEEE;

USE IEEE.std logic 1164.all;

—— *¥**** zero test model ****x*
-- external ports

ENTITY zero test IS PORT
In word

zero_ flag

);

END zero test;

(

in std logic vector (15 downto 0);
OUT std logic

-- internal structure
ARCHITECTURE rtl OF zero test IS

begin

process
begin

(In_word)

if (In word = "0000000000000000™) then
zero _flag <= '1"';

else zero flag <= '0';

end 1
end pro

END rtl

£;
cess,

’
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BGA
CFTP
COTS
Coregen
CPLD
ESSD
FPGA
HDL
IAR
ISR
LEO
Mem
NPS
Opcode
RADHARD
RAM
RFE
RISC
ROM
SEB
SEE

SEL

APPENDIX E:

Ball Grid Array

Configurable Fault-Tolerant Processor

Commercial Off the Shelf

CORE generator

Complex Programmable Logic Device

Error Syndrome Storage Device
Field Programmable Gate Array
Hardware Description Language
Interrupt Address Register
Interrupt Service Routine
Low-Earth Orbit

Memory

Naval Postgraduate School
Operation code

Radiation Hardened
Ramdom-Access Memory
Return From Exception
Reduced Instruction Set Computer
Read-Only Memory
Single Event Burnout
Single Event Effects

Single Event Latchup
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SEP

SERB

SEU

SOC

SPLD

STP

TMR

VHSIC

VDHL

WB

Single Event Phenomenon

Space Experiment Review Board

Single Event Upset

System On a Chip

Sequential (or Simple) Programmable Logic Device
Space Test Program

Triple Modular Redundancy

Very High Speed Integrated Circuit

VHSIC Hardware Description Language

Write Back
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